Description: A non-negative surreal integer is a surreal integer. (Contributed by Scott Fenton, 26-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | n0zs | |- ( A e. NN0_s -> A e. ZZ_s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eln0s | |- ( A e. NN0_s <-> ( A e. NN_s \/ A = 0s ) ) |
|
| 2 | nnzs | |- ( A e. NN_s -> A e. ZZ_s ) |
|
| 3 | id | |- ( A = 0s -> A = 0s ) |
|
| 4 | 0zs | |- 0s e. ZZ_s |
|
| 5 | 3 4 | eqeltrdi | |- ( A = 0s -> A e. ZZ_s ) |
| 6 | 2 5 | jaoi | |- ( ( A e. NN_s \/ A = 0s ) -> A e. ZZ_s ) |
| 7 | 1 6 | sylbi | |- ( A e. NN0_s -> A e. ZZ_s ) |