| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addsubs4d.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | addsubs4d.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | addsubs4d.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 4 |  | addsubs4d.4 | ⊢ ( 𝜑  →  𝐷  ∈   No  ) | 
						
							| 5 | 1 2 3 | addsubsd | ⊢ ( 𝜑  →  ( ( 𝐴  +s  𝐵 )  -s  𝐶 )  =  ( ( 𝐴  -s  𝐶 )  +s  𝐵 ) ) | 
						
							| 6 | 5 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐴  +s  𝐵 )  -s  𝐶 )  -s  𝐷 )  =  ( ( ( 𝐴  -s  𝐶 )  +s  𝐵 )  -s  𝐷 ) ) | 
						
							| 7 | 1 2 | addscld | ⊢ ( 𝜑  →  ( 𝐴  +s  𝐵 )  ∈   No  ) | 
						
							| 8 | 7 3 4 | subsubs4d | ⊢ ( 𝜑  →  ( ( ( 𝐴  +s  𝐵 )  -s  𝐶 )  -s  𝐷 )  =  ( ( 𝐴  +s  𝐵 )  -s  ( 𝐶  +s  𝐷 ) ) ) | 
						
							| 9 | 1 3 | subscld | ⊢ ( 𝜑  →  ( 𝐴  -s  𝐶 )  ∈   No  ) | 
						
							| 10 | 9 2 4 | addsubsassd | ⊢ ( 𝜑  →  ( ( ( 𝐴  -s  𝐶 )  +s  𝐵 )  -s  𝐷 )  =  ( ( 𝐴  -s  𝐶 )  +s  ( 𝐵  -s  𝐷 ) ) ) | 
						
							| 11 | 6 8 10 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝐴  +s  𝐵 )  -s  ( 𝐶  +s  𝐷 ) )  =  ( ( 𝐴  -s  𝐶 )  +s  ( 𝐵  -s  𝐷 ) ) ) |