Step |
Hyp |
Ref |
Expression |
1 |
|
addsubsassd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
addsubsassd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
addsubsassd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
3
|
negscld |
⊢ ( 𝜑 → ( -us ‘ 𝐶 ) ∈ No ) |
5 |
1 2 4
|
addsassd |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s ( -us ‘ 𝐶 ) ) = ( 𝐴 +s ( 𝐵 +s ( -us ‘ 𝐶 ) ) ) ) |
6 |
1 2
|
addscld |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No ) |
7 |
6 3
|
subsvald |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) -s 𝐶 ) = ( ( 𝐴 +s 𝐵 ) +s ( -us ‘ 𝐶 ) ) ) |
8 |
2 3
|
subsvald |
⊢ ( 𝜑 → ( 𝐵 -s 𝐶 ) = ( 𝐵 +s ( -us ‘ 𝐶 ) ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 +s ( 𝐵 -s 𝐶 ) ) = ( 𝐴 +s ( 𝐵 +s ( -us ‘ 𝐶 ) ) ) ) |
10 |
5 7 9
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) -s 𝐶 ) = ( 𝐴 +s ( 𝐵 -s 𝐶 ) ) ) |