Metamath Proof Explorer


Theorem addsubsassd

Description: Associative-type law for surreal addition and subtraction. (Contributed by Scott Fenton, 6-Feb-2025)

Ref Expression
Hypotheses addsubsassd.1 ( 𝜑𝐴 No )
addsubsassd.2 ( 𝜑𝐵 No )
addsubsassd.3 ( 𝜑𝐶 No )
Assertion addsubsassd ( 𝜑 → ( ( 𝐴 +s 𝐵 ) -s 𝐶 ) = ( 𝐴 +s ( 𝐵 -s 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 addsubsassd.1 ( 𝜑𝐴 No )
2 addsubsassd.2 ( 𝜑𝐵 No )
3 addsubsassd.3 ( 𝜑𝐶 No )
4 3 negscld ( 𝜑 → ( -us𝐶 ) ∈ No )
5 1 2 4 addsassd ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s ( -us𝐶 ) ) = ( 𝐴 +s ( 𝐵 +s ( -us𝐶 ) ) ) )
6 1 2 addscld ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No )
7 6 3 subsvald ( 𝜑 → ( ( 𝐴 +s 𝐵 ) -s 𝐶 ) = ( ( 𝐴 +s 𝐵 ) +s ( -us𝐶 ) ) )
8 2 3 subsvald ( 𝜑 → ( 𝐵 -s 𝐶 ) = ( 𝐵 +s ( -us𝐶 ) ) )
9 8 oveq2d ( 𝜑 → ( 𝐴 +s ( 𝐵 -s 𝐶 ) ) = ( 𝐴 +s ( 𝐵 +s ( -us𝐶 ) ) ) )
10 5 7 9 3eqtr4d ( 𝜑 → ( ( 𝐴 +s 𝐵 ) -s 𝐶 ) = ( 𝐴 +s ( 𝐵 -s 𝐶 ) ) )