Step |
Hyp |
Ref |
Expression |
1 |
|
addsubsassd.1 |
|- ( ph -> A e. No ) |
2 |
|
addsubsassd.2 |
|- ( ph -> B e. No ) |
3 |
|
addsubsassd.3 |
|- ( ph -> C e. No ) |
4 |
3
|
negscld |
|- ( ph -> ( -us ` C ) e. No ) |
5 |
1 2 4
|
addsassd |
|- ( ph -> ( ( A +s B ) +s ( -us ` C ) ) = ( A +s ( B +s ( -us ` C ) ) ) ) |
6 |
1 2
|
addscld |
|- ( ph -> ( A +s B ) e. No ) |
7 |
6 3
|
subsvald |
|- ( ph -> ( ( A +s B ) -s C ) = ( ( A +s B ) +s ( -us ` C ) ) ) |
8 |
2 3
|
subsvald |
|- ( ph -> ( B -s C ) = ( B +s ( -us ` C ) ) ) |
9 |
8
|
oveq2d |
|- ( ph -> ( A +s ( B -s C ) ) = ( A +s ( B +s ( -us ` C ) ) ) ) |
10 |
5 7 9
|
3eqtr4d |
|- ( ph -> ( ( A +s B ) -s C ) = ( A +s ( B -s C ) ) ) |