Metamath Proof Explorer


Theorem addsubsassd

Description: Associative-type law for surreal addition and subtraction. (Contributed by Scott Fenton, 6-Feb-2025)

Ref Expression
Hypotheses addsubsassd.1
|- ( ph -> A e. No )
addsubsassd.2
|- ( ph -> B e. No )
addsubsassd.3
|- ( ph -> C e. No )
Assertion addsubsassd
|- ( ph -> ( ( A +s B ) -s C ) = ( A +s ( B -s C ) ) )

Proof

Step Hyp Ref Expression
1 addsubsassd.1
 |-  ( ph -> A e. No )
2 addsubsassd.2
 |-  ( ph -> B e. No )
3 addsubsassd.3
 |-  ( ph -> C e. No )
4 3 negscld
 |-  ( ph -> ( -us ` C ) e. No )
5 1 2 4 addsassd
 |-  ( ph -> ( ( A +s B ) +s ( -us ` C ) ) = ( A +s ( B +s ( -us ` C ) ) ) )
6 1 2 addscld
 |-  ( ph -> ( A +s B ) e. No )
7 6 3 subsvald
 |-  ( ph -> ( ( A +s B ) -s C ) = ( ( A +s B ) +s ( -us ` C ) ) )
8 2 3 subsvald
 |-  ( ph -> ( B -s C ) = ( B +s ( -us ` C ) ) )
9 8 oveq2d
 |-  ( ph -> ( A +s ( B -s C ) ) = ( A +s ( B +s ( -us ` C ) ) ) )
10 5 7 9 3eqtr4d
 |-  ( ph -> ( ( A +s B ) -s C ) = ( A +s ( B -s C ) ) )