| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addsubs4d.1 |  |-  ( ph -> A e. No ) | 
						
							| 2 |  | addsubs4d.2 |  |-  ( ph -> B e. No ) | 
						
							| 3 |  | addsubs4d.3 |  |-  ( ph -> C e. No ) | 
						
							| 4 |  | addsubs4d.4 |  |-  ( ph -> D e. No ) | 
						
							| 5 | 1 2 3 | addsubsd |  |-  ( ph -> ( ( A +s B ) -s C ) = ( ( A -s C ) +s B ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( ph -> ( ( ( A +s B ) -s C ) -s D ) = ( ( ( A -s C ) +s B ) -s D ) ) | 
						
							| 7 | 1 2 | addscld |  |-  ( ph -> ( A +s B ) e. No ) | 
						
							| 8 | 7 3 4 | subsubs4d |  |-  ( ph -> ( ( ( A +s B ) -s C ) -s D ) = ( ( A +s B ) -s ( C +s D ) ) ) | 
						
							| 9 | 1 3 | subscld |  |-  ( ph -> ( A -s C ) e. No ) | 
						
							| 10 | 9 2 4 | addsubsassd |  |-  ( ph -> ( ( ( A -s C ) +s B ) -s D ) = ( ( A -s C ) +s ( B -s D ) ) ) | 
						
							| 11 | 6 8 10 | 3eqtr3d |  |-  ( ph -> ( ( A +s B ) -s ( C +s D ) ) = ( ( A -s C ) +s ( B -s D ) ) ) |