| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsubs4d.1 |
|- ( ph -> A e. No ) |
| 2 |
|
subsubs4d.2 |
|- ( ph -> B e. No ) |
| 3 |
|
subsubs4d.3 |
|- ( ph -> C e. No ) |
| 4 |
2
|
negscld |
|- ( ph -> ( -us ` B ) e. No ) |
| 5 |
3
|
negscld |
|- ( ph -> ( -us ` C ) e. No ) |
| 6 |
1 4 5
|
addsassd |
|- ( ph -> ( ( A +s ( -us ` B ) ) +s ( -us ` C ) ) = ( A +s ( ( -us ` B ) +s ( -us ` C ) ) ) ) |
| 7 |
1 2
|
subsvald |
|- ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |
| 8 |
7
|
oveq1d |
|- ( ph -> ( ( A -s B ) -s C ) = ( ( A +s ( -us ` B ) ) -s C ) ) |
| 9 |
1 4
|
addscld |
|- ( ph -> ( A +s ( -us ` B ) ) e. No ) |
| 10 |
9 3
|
subsvald |
|- ( ph -> ( ( A +s ( -us ` B ) ) -s C ) = ( ( A +s ( -us ` B ) ) +s ( -us ` C ) ) ) |
| 11 |
8 10
|
eqtrd |
|- ( ph -> ( ( A -s B ) -s C ) = ( ( A +s ( -us ` B ) ) +s ( -us ` C ) ) ) |
| 12 |
2 3
|
addscld |
|- ( ph -> ( B +s C ) e. No ) |
| 13 |
1 12
|
subsvald |
|- ( ph -> ( A -s ( B +s C ) ) = ( A +s ( -us ` ( B +s C ) ) ) ) |
| 14 |
|
negsdi |
|- ( ( B e. No /\ C e. No ) -> ( -us ` ( B +s C ) ) = ( ( -us ` B ) +s ( -us ` C ) ) ) |
| 15 |
2 3 14
|
syl2anc |
|- ( ph -> ( -us ` ( B +s C ) ) = ( ( -us ` B ) +s ( -us ` C ) ) ) |
| 16 |
15
|
oveq2d |
|- ( ph -> ( A +s ( -us ` ( B +s C ) ) ) = ( A +s ( ( -us ` B ) +s ( -us ` C ) ) ) ) |
| 17 |
13 16
|
eqtrd |
|- ( ph -> ( A -s ( B +s C ) ) = ( A +s ( ( -us ` B ) +s ( -us ` C ) ) ) ) |
| 18 |
6 11 17
|
3eqtr4d |
|- ( ph -> ( ( A -s B ) -s C ) = ( A -s ( B +s C ) ) ) |