Metamath Proof Explorer


Theorem subsubs4d

Description: Law for double surreal subtraction. (Contributed by Scott Fenton, 9-Mar-2025)

Ref Expression
Hypotheses subsubs4d.1 φANo
subsubs4d.2 φBNo
subsubs4d.3 φCNo
Assertion subsubs4d Could not format assertion : No typesetting found for |- ( ph -> ( ( A -s B ) -s C ) = ( A -s ( B +s C ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 subsubs4d.1 φANo
2 subsubs4d.2 φBNo
3 subsubs4d.3 φCNo
4 2 negscld Could not format ( ph -> ( -us ` B ) e. No ) : No typesetting found for |- ( ph -> ( -us ` B ) e. No ) with typecode |-
5 3 negscld Could not format ( ph -> ( -us ` C ) e. No ) : No typesetting found for |- ( ph -> ( -us ` C ) e. No ) with typecode |-
6 1 4 5 addsassd Could not format ( ph -> ( ( A +s ( -us ` B ) ) +s ( -us ` C ) ) = ( A +s ( ( -us ` B ) +s ( -us ` C ) ) ) ) : No typesetting found for |- ( ph -> ( ( A +s ( -us ` B ) ) +s ( -us ` C ) ) = ( A +s ( ( -us ` B ) +s ( -us ` C ) ) ) ) with typecode |-
7 1 2 subsvald Could not format ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) ) : No typesetting found for |- ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) ) with typecode |-
8 7 oveq1d Could not format ( ph -> ( ( A -s B ) -s C ) = ( ( A +s ( -us ` B ) ) -s C ) ) : No typesetting found for |- ( ph -> ( ( A -s B ) -s C ) = ( ( A +s ( -us ` B ) ) -s C ) ) with typecode |-
9 1 4 addscld Could not format ( ph -> ( A +s ( -us ` B ) ) e. No ) : No typesetting found for |- ( ph -> ( A +s ( -us ` B ) ) e. No ) with typecode |-
10 9 3 subsvald Could not format ( ph -> ( ( A +s ( -us ` B ) ) -s C ) = ( ( A +s ( -us ` B ) ) +s ( -us ` C ) ) ) : No typesetting found for |- ( ph -> ( ( A +s ( -us ` B ) ) -s C ) = ( ( A +s ( -us ` B ) ) +s ( -us ` C ) ) ) with typecode |-
11 8 10 eqtrd Could not format ( ph -> ( ( A -s B ) -s C ) = ( ( A +s ( -us ` B ) ) +s ( -us ` C ) ) ) : No typesetting found for |- ( ph -> ( ( A -s B ) -s C ) = ( ( A +s ( -us ` B ) ) +s ( -us ` C ) ) ) with typecode |-
12 2 3 addscld Could not format ( ph -> ( B +s C ) e. No ) : No typesetting found for |- ( ph -> ( B +s C ) e. No ) with typecode |-
13 1 12 subsvald Could not format ( ph -> ( A -s ( B +s C ) ) = ( A +s ( -us ` ( B +s C ) ) ) ) : No typesetting found for |- ( ph -> ( A -s ( B +s C ) ) = ( A +s ( -us ` ( B +s C ) ) ) ) with typecode |-
14 negsdi Could not format ( ( B e. No /\ C e. No ) -> ( -us ` ( B +s C ) ) = ( ( -us ` B ) +s ( -us ` C ) ) ) : No typesetting found for |- ( ( B e. No /\ C e. No ) -> ( -us ` ( B +s C ) ) = ( ( -us ` B ) +s ( -us ` C ) ) ) with typecode |-
15 2 3 14 syl2anc Could not format ( ph -> ( -us ` ( B +s C ) ) = ( ( -us ` B ) +s ( -us ` C ) ) ) : No typesetting found for |- ( ph -> ( -us ` ( B +s C ) ) = ( ( -us ` B ) +s ( -us ` C ) ) ) with typecode |-
16 15 oveq2d Could not format ( ph -> ( A +s ( -us ` ( B +s C ) ) ) = ( A +s ( ( -us ` B ) +s ( -us ` C ) ) ) ) : No typesetting found for |- ( ph -> ( A +s ( -us ` ( B +s C ) ) ) = ( A +s ( ( -us ` B ) +s ( -us ` C ) ) ) ) with typecode |-
17 13 16 eqtrd Could not format ( ph -> ( A -s ( B +s C ) ) = ( A +s ( ( -us ` B ) +s ( -us ` C ) ) ) ) : No typesetting found for |- ( ph -> ( A -s ( B +s C ) ) = ( A +s ( ( -us ` B ) +s ( -us ` C ) ) ) ) with typecode |-
18 6 11 17 3eqtr4d Could not format ( ph -> ( ( A -s B ) -s C ) = ( A -s ( B +s C ) ) ) : No typesetting found for |- ( ph -> ( ( A -s B ) -s C ) = ( A -s ( B +s C ) ) ) with typecode |-