| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsubs4d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
subsubs4d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
subsubs4d.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 4 |
2
|
negscld |
⊢ ( 𝜑 → ( -us ‘ 𝐵 ) ∈ No ) |
| 5 |
3
|
negscld |
⊢ ( 𝜑 → ( -us ‘ 𝐶 ) ∈ No ) |
| 6 |
1 4 5
|
addsassd |
⊢ ( 𝜑 → ( ( 𝐴 +s ( -us ‘ 𝐵 ) ) +s ( -us ‘ 𝐶 ) ) = ( 𝐴 +s ( ( -us ‘ 𝐵 ) +s ( -us ‘ 𝐶 ) ) ) ) |
| 7 |
1 2
|
subsvald |
⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) |
| 8 |
7
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) -s 𝐶 ) = ( ( 𝐴 +s ( -us ‘ 𝐵 ) ) -s 𝐶 ) ) |
| 9 |
1 4
|
addscld |
⊢ ( 𝜑 → ( 𝐴 +s ( -us ‘ 𝐵 ) ) ∈ No ) |
| 10 |
9 3
|
subsvald |
⊢ ( 𝜑 → ( ( 𝐴 +s ( -us ‘ 𝐵 ) ) -s 𝐶 ) = ( ( 𝐴 +s ( -us ‘ 𝐵 ) ) +s ( -us ‘ 𝐶 ) ) ) |
| 11 |
8 10
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) -s 𝐶 ) = ( ( 𝐴 +s ( -us ‘ 𝐵 ) ) +s ( -us ‘ 𝐶 ) ) ) |
| 12 |
2 3
|
addscld |
⊢ ( 𝜑 → ( 𝐵 +s 𝐶 ) ∈ No ) |
| 13 |
1 12
|
subsvald |
⊢ ( 𝜑 → ( 𝐴 -s ( 𝐵 +s 𝐶 ) ) = ( 𝐴 +s ( -us ‘ ( 𝐵 +s 𝐶 ) ) ) ) |
| 14 |
|
negsdi |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( -us ‘ ( 𝐵 +s 𝐶 ) ) = ( ( -us ‘ 𝐵 ) +s ( -us ‘ 𝐶 ) ) ) |
| 15 |
2 3 14
|
syl2anc |
⊢ ( 𝜑 → ( -us ‘ ( 𝐵 +s 𝐶 ) ) = ( ( -us ‘ 𝐵 ) +s ( -us ‘ 𝐶 ) ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 +s ( -us ‘ ( 𝐵 +s 𝐶 ) ) ) = ( 𝐴 +s ( ( -us ‘ 𝐵 ) +s ( -us ‘ 𝐶 ) ) ) ) |
| 17 |
13 16
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 -s ( 𝐵 +s 𝐶 ) ) = ( 𝐴 +s ( ( -us ‘ 𝐵 ) +s ( -us ‘ 𝐶 ) ) ) ) |
| 18 |
6 11 17
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) -s 𝐶 ) = ( 𝐴 -s ( 𝐵 +s 𝐶 ) ) ) |