Description: Law for double surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subsubs4d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| subsubs4d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
| subsubs4d.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | ||
| Assertion | subsubs2d | ⊢ ( 𝜑 → ( 𝐴 -s ( 𝐵 -s 𝐶 ) ) = ( 𝐴 +s ( 𝐶 -s 𝐵 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | subsubs4d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | subsubs4d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
| 3 | subsubs4d.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | |
| 4 | 2 3 | subscld | ⊢ ( 𝜑 → ( 𝐵 -s 𝐶 ) ∈ No ) | 
| 5 | 1 4 | subsvald | ⊢ ( 𝜑 → ( 𝐴 -s ( 𝐵 -s 𝐶 ) ) = ( 𝐴 +s ( -us ‘ ( 𝐵 -s 𝐶 ) ) ) ) | 
| 6 | 2 3 | negsubsdi2d | ⊢ ( 𝜑 → ( -us ‘ ( 𝐵 -s 𝐶 ) ) = ( 𝐶 -s 𝐵 ) ) | 
| 7 | 6 | oveq2d | ⊢ ( 𝜑 → ( 𝐴 +s ( -us ‘ ( 𝐵 -s 𝐶 ) ) ) = ( 𝐴 +s ( 𝐶 -s 𝐵 ) ) ) | 
| 8 | 5 7 | eqtrd | ⊢ ( 𝜑 → ( 𝐴 -s ( 𝐵 -s 𝐶 ) ) = ( 𝐴 +s ( 𝐶 -s 𝐵 ) ) ) |