Metamath Proof Explorer


Theorem nnsnod

Description: A positive surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Hypothesis nnsnod.1 ( 𝜑𝐴 ∈ ℕs )
Assertion nnsnod ( 𝜑𝐴 No )

Proof

Step Hyp Ref Expression
1 nnsnod.1 ( 𝜑𝐴 ∈ ℕs )
2 nnsno ( 𝐴 ∈ ℕs𝐴 No )
3 1 2 syl ( 𝜑𝐴 No )