Metamath Proof Explorer


Theorem nnsnod

Description: A positive surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Hypothesis nnsnod.1
|- ( ph -> A e. NN_s )
Assertion nnsnod
|- ( ph -> A e. No )

Proof

Step Hyp Ref Expression
1 nnsnod.1
 |-  ( ph -> A e. NN_s )
2 nnsno
 |-  ( A e. NN_s -> A e. No )
3 1 2 syl
 |-  ( ph -> A e. No )