Metamath Proof Explorer
Description: The surreal integers are closed under addition. (Contributed by Scott
Fenton, 25-Jul-2025)
|
|
Ref |
Expression |
|
Hypotheses |
zaddscld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℤs ) |
|
|
zaddscld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℤs ) |
|
Assertion |
zaddscld |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ ℤs ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
zaddscld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℤs ) |
2 |
|
zaddscld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℤs ) |
3 |
|
zaddscl |
⊢ ( ( 𝐴 ∈ ℤs ∧ 𝐵 ∈ ℤs ) → ( 𝐴 +s 𝐵 ) ∈ ℤs ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ ℤs ) |