Metamath Proof Explorer


Theorem zaddscld

Description: The surreal integers are closed under addition. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Hypotheses zaddscld.1 ( 𝜑𝐴 ∈ ℤs )
zaddscld.2 ( 𝜑𝐵 ∈ ℤs )
Assertion zaddscld ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ ℤs )

Proof

Step Hyp Ref Expression
1 zaddscld.1 ( 𝜑𝐴 ∈ ℤs )
2 zaddscld.2 ( 𝜑𝐵 ∈ ℤs )
3 zaddscl ( ( 𝐴 ∈ ℤs𝐵 ∈ ℤs ) → ( 𝐴 +s 𝐵 ) ∈ ℤs )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ ℤs )