Description: The surreal integers are closed under subtraction. (Contributed by Scott Fenton, 25-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zsubscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℤs ) | |
| zsubscld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℤs ) | ||
| Assertion | zsubscld | ⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ ℤs ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsubscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℤs ) | |
| 2 | zsubscld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℤs ) | |
| 3 | 1 | znod | ⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 4 | 2 | znod | ⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 5 | 3 4 | subsvald | ⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) |
| 6 | 2 | znegscld | ⊢ ( 𝜑 → ( -us ‘ 𝐵 ) ∈ ℤs ) |
| 7 | 1 6 | zaddscld | ⊢ ( 𝜑 → ( 𝐴 +s ( -us ‘ 𝐵 ) ) ∈ ℤs ) |
| 8 | 5 7 | eqeltrd | ⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ ℤs ) |