Description: The surreal integers are closed under subtraction. (Contributed by Scott Fenton, 25-Jul-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zsubscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℤs ) | |
zsubscld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℤs ) | ||
Assertion | zsubscld | ⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ ℤs ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsubscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℤs ) | |
2 | zsubscld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℤs ) | |
3 | 1 | znod | ⊢ ( 𝜑 → 𝐴 ∈ No ) |
4 | 2 | znod | ⊢ ( 𝜑 → 𝐵 ∈ No ) |
5 | 3 4 | subsvald | ⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) |
6 | 2 | znegscld | ⊢ ( 𝜑 → ( -us ‘ 𝐵 ) ∈ ℤs ) |
7 | 1 6 | zaddscld | ⊢ ( 𝜑 → ( 𝐴 +s ( -us ‘ 𝐵 ) ) ∈ ℤs ) |
8 | 5 7 | eqeltrd | ⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ ℤs ) |