Metamath Proof Explorer


Theorem zsubscld

Description: The surreal integers are closed under subtraction. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Hypotheses zsubscld.1 ( 𝜑𝐴 ∈ ℤs )
zsubscld.2 ( 𝜑𝐵 ∈ ℤs )
Assertion zsubscld ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ ℤs )

Proof

Step Hyp Ref Expression
1 zsubscld.1 ( 𝜑𝐴 ∈ ℤs )
2 zsubscld.2 ( 𝜑𝐵 ∈ ℤs )
3 1 znod ( 𝜑𝐴 No )
4 2 znod ( 𝜑𝐵 No )
5 3 4 subsvald ( 𝜑 → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us𝐵 ) ) )
6 2 znegscld ( 𝜑 → ( -us𝐵 ) ∈ ℤs )
7 1 6 zaddscld ( 𝜑 → ( 𝐴 +s ( -us𝐵 ) ) ∈ ℤs )
8 5 7 eqeltrd ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ ℤs )