Description: The surreal integers are closed under subtraction. (Contributed by Scott Fenton, 25-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zsubscld.1 | |- ( ph -> A e. ZZ_s ) |
|
| zsubscld.2 | |- ( ph -> B e. ZZ_s ) |
||
| Assertion | zsubscld | |- ( ph -> ( A -s B ) e. ZZ_s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsubscld.1 | |- ( ph -> A e. ZZ_s ) |
|
| 2 | zsubscld.2 | |- ( ph -> B e. ZZ_s ) |
|
| 3 | 1 | znod | |- ( ph -> A e. No ) |
| 4 | 2 | znod | |- ( ph -> B e. No ) |
| 5 | 3 4 | subsvald | |- ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |
| 6 | 2 | znegscld | |- ( ph -> ( -us ` B ) e. ZZ_s ) |
| 7 | 1 6 | zaddscld | |- ( ph -> ( A +s ( -us ` B ) ) e. ZZ_s ) |
| 8 | 5 7 | eqeltrd | |- ( ph -> ( A -s B ) e. ZZ_s ) |