Metamath Proof Explorer


Theorem zsubscld

Description: The surreal integers are closed under subtraction. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Hypotheses zsubscld.1
|- ( ph -> A e. ZZ_s )
zsubscld.2
|- ( ph -> B e. ZZ_s )
Assertion zsubscld
|- ( ph -> ( A -s B ) e. ZZ_s )

Proof

Step Hyp Ref Expression
1 zsubscld.1
 |-  ( ph -> A e. ZZ_s )
2 zsubscld.2
 |-  ( ph -> B e. ZZ_s )
3 1 znod
 |-  ( ph -> A e. No )
4 2 znod
 |-  ( ph -> B e. No )
5 3 4 subsvald
 |-  ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) )
6 2 znegscld
 |-  ( ph -> ( -us ` B ) e. ZZ_s )
7 1 6 zaddscld
 |-  ( ph -> ( A +s ( -us ` B ) ) e. ZZ_s )
8 5 7 eqeltrd
 |-  ( ph -> ( A -s B ) e. ZZ_s )