Step |
Hyp |
Ref |
Expression |
1 |
|
zmulscld.1 |
|- ( ph -> A e. ZZ_s ) |
2 |
|
zmulscld.2 |
|- ( ph -> B e. ZZ_s ) |
3 |
|
elzs |
|- ( A e. ZZ_s <-> E. x e. NN_s E. y e. NN_s A = ( x -s y ) ) |
4 |
1 3
|
sylib |
|- ( ph -> E. x e. NN_s E. y e. NN_s A = ( x -s y ) ) |
5 |
|
elzs |
|- ( B e. ZZ_s <-> E. z e. NN_s E. w e. NN_s B = ( z -s w ) ) |
6 |
2 5
|
sylib |
|- ( ph -> E. z e. NN_s E. w e. NN_s B = ( z -s w ) ) |
7 |
|
reeanv |
|- ( E. y e. NN_s E. w e. NN_s ( A = ( x -s y ) /\ B = ( z -s w ) ) <-> ( E. y e. NN_s A = ( x -s y ) /\ E. w e. NN_s B = ( z -s w ) ) ) |
8 |
7
|
2rexbii |
|- ( E. x e. NN_s E. z e. NN_s E. y e. NN_s E. w e. NN_s ( A = ( x -s y ) /\ B = ( z -s w ) ) <-> E. x e. NN_s E. z e. NN_s ( E. y e. NN_s A = ( x -s y ) /\ E. w e. NN_s B = ( z -s w ) ) ) |
9 |
|
reeanv |
|- ( E. x e. NN_s E. z e. NN_s ( E. y e. NN_s A = ( x -s y ) /\ E. w e. NN_s B = ( z -s w ) ) <-> ( E. x e. NN_s E. y e. NN_s A = ( x -s y ) /\ E. z e. NN_s E. w e. NN_s B = ( z -s w ) ) ) |
10 |
8 9
|
bitri |
|- ( E. x e. NN_s E. z e. NN_s E. y e. NN_s E. w e. NN_s ( A = ( x -s y ) /\ B = ( z -s w ) ) <-> ( E. x e. NN_s E. y e. NN_s A = ( x -s y ) /\ E. z e. NN_s E. w e. NN_s B = ( z -s w ) ) ) |
11 |
|
nnsno |
|- ( x e. NN_s -> x e. No ) |
12 |
11
|
ad2antrr |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> x e. No ) |
13 |
|
nnsno |
|- ( y e. NN_s -> y e. No ) |
14 |
13
|
ad2antrl |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> y e. No ) |
15 |
12 14
|
subscld |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( x -s y ) e. No ) |
16 |
|
nnsno |
|- ( z e. NN_s -> z e. No ) |
17 |
16
|
ad2antlr |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> z e. No ) |
18 |
|
nnsno |
|- ( w e. NN_s -> w e. No ) |
19 |
18
|
ad2antll |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> w e. No ) |
20 |
15 17 19
|
subsdid |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( ( x -s y ) x.s ( z -s w ) ) = ( ( ( x -s y ) x.s z ) -s ( ( x -s y ) x.s w ) ) ) |
21 |
|
nnmulscl |
|- ( ( x e. NN_s /\ z e. NN_s ) -> ( x x.s z ) e. NN_s ) |
22 |
21
|
adantr |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( x x.s z ) e. NN_s ) |
23 |
22
|
nnsnod |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( x x.s z ) e. No ) |
24 |
|
simprl |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> y e. NN_s ) |
25 |
|
simplr |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> z e. NN_s ) |
26 |
|
nnmulscl |
|- ( ( y e. NN_s /\ z e. NN_s ) -> ( y x.s z ) e. NN_s ) |
27 |
24 25 26
|
syl2anc |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( y x.s z ) e. NN_s ) |
28 |
27
|
nnsnod |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( y x.s z ) e. No ) |
29 |
23 28
|
subscld |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( ( x x.s z ) -s ( y x.s z ) ) e. No ) |
30 |
|
nnmulscl |
|- ( ( x e. NN_s /\ w e. NN_s ) -> ( x x.s w ) e. NN_s ) |
31 |
30
|
ad2ant2rl |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( x x.s w ) e. NN_s ) |
32 |
31
|
nnsnod |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( x x.s w ) e. No ) |
33 |
|
nnmulscl |
|- ( ( y e. NN_s /\ w e. NN_s ) -> ( y x.s w ) e. NN_s ) |
34 |
33
|
adantl |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( y x.s w ) e. NN_s ) |
35 |
34
|
nnsnod |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( y x.s w ) e. No ) |
36 |
29 32 35
|
subsubs2d |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( ( ( x x.s z ) -s ( y x.s z ) ) -s ( ( x x.s w ) -s ( y x.s w ) ) ) = ( ( ( x x.s z ) -s ( y x.s z ) ) +s ( ( y x.s w ) -s ( x x.s w ) ) ) ) |
37 |
12 14 17
|
subsdird |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( ( x -s y ) x.s z ) = ( ( x x.s z ) -s ( y x.s z ) ) ) |
38 |
12 14 19
|
subsdird |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( ( x -s y ) x.s w ) = ( ( x x.s w ) -s ( y x.s w ) ) ) |
39 |
37 38
|
oveq12d |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( ( ( x -s y ) x.s z ) -s ( ( x -s y ) x.s w ) ) = ( ( ( x x.s z ) -s ( y x.s z ) ) -s ( ( x x.s w ) -s ( y x.s w ) ) ) ) |
40 |
23 35 28 32
|
addsubs4d |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( ( ( x x.s z ) +s ( y x.s w ) ) -s ( ( y x.s z ) +s ( x x.s w ) ) ) = ( ( ( x x.s z ) -s ( y x.s z ) ) +s ( ( y x.s w ) -s ( x x.s w ) ) ) ) |
41 |
36 39 40
|
3eqtr4d |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( ( ( x -s y ) x.s z ) -s ( ( x -s y ) x.s w ) ) = ( ( ( x x.s z ) +s ( y x.s w ) ) -s ( ( y x.s z ) +s ( x x.s w ) ) ) ) |
42 |
20 41
|
eqtrd |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( ( x -s y ) x.s ( z -s w ) ) = ( ( ( x x.s z ) +s ( y x.s w ) ) -s ( ( y x.s z ) +s ( x x.s w ) ) ) ) |
43 |
|
nnaddscl |
|- ( ( ( x x.s z ) e. NN_s /\ ( y x.s w ) e. NN_s ) -> ( ( x x.s z ) +s ( y x.s w ) ) e. NN_s ) |
44 |
22 34 43
|
syl2anc |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( ( x x.s z ) +s ( y x.s w ) ) e. NN_s ) |
45 |
|
nnaddscl |
|- ( ( ( y x.s z ) e. NN_s /\ ( x x.s w ) e. NN_s ) -> ( ( y x.s z ) +s ( x x.s w ) ) e. NN_s ) |
46 |
27 31 45
|
syl2anc |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( ( y x.s z ) +s ( x x.s w ) ) e. NN_s ) |
47 |
|
eqid |
|- ( ( ( x x.s z ) +s ( y x.s w ) ) -s ( ( y x.s z ) +s ( x x.s w ) ) ) = ( ( ( x x.s z ) +s ( y x.s w ) ) -s ( ( y x.s z ) +s ( x x.s w ) ) ) |
48 |
|
rspceov |
|- ( ( ( ( x x.s z ) +s ( y x.s w ) ) e. NN_s /\ ( ( y x.s z ) +s ( x x.s w ) ) e. NN_s /\ ( ( ( x x.s z ) +s ( y x.s w ) ) -s ( ( y x.s z ) +s ( x x.s w ) ) ) = ( ( ( x x.s z ) +s ( y x.s w ) ) -s ( ( y x.s z ) +s ( x x.s w ) ) ) ) -> E. t e. NN_s E. u e. NN_s ( ( ( x x.s z ) +s ( y x.s w ) ) -s ( ( y x.s z ) +s ( x x.s w ) ) ) = ( t -s u ) ) |
49 |
47 48
|
mp3an3 |
|- ( ( ( ( x x.s z ) +s ( y x.s w ) ) e. NN_s /\ ( ( y x.s z ) +s ( x x.s w ) ) e. NN_s ) -> E. t e. NN_s E. u e. NN_s ( ( ( x x.s z ) +s ( y x.s w ) ) -s ( ( y x.s z ) +s ( x x.s w ) ) ) = ( t -s u ) ) |
50 |
44 46 49
|
syl2anc |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> E. t e. NN_s E. u e. NN_s ( ( ( x x.s z ) +s ( y x.s w ) ) -s ( ( y x.s z ) +s ( x x.s w ) ) ) = ( t -s u ) ) |
51 |
|
elzs |
|- ( ( ( ( x x.s z ) +s ( y x.s w ) ) -s ( ( y x.s z ) +s ( x x.s w ) ) ) e. ZZ_s <-> E. t e. NN_s E. u e. NN_s ( ( ( x x.s z ) +s ( y x.s w ) ) -s ( ( y x.s z ) +s ( x x.s w ) ) ) = ( t -s u ) ) |
52 |
50 51
|
sylibr |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( ( ( x x.s z ) +s ( y x.s w ) ) -s ( ( y x.s z ) +s ( x x.s w ) ) ) e. ZZ_s ) |
53 |
42 52
|
eqeltrd |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( ( x -s y ) x.s ( z -s w ) ) e. ZZ_s ) |
54 |
|
oveq12 |
|- ( ( A = ( x -s y ) /\ B = ( z -s w ) ) -> ( A x.s B ) = ( ( x -s y ) x.s ( z -s w ) ) ) |
55 |
54
|
eleq1d |
|- ( ( A = ( x -s y ) /\ B = ( z -s w ) ) -> ( ( A x.s B ) e. ZZ_s <-> ( ( x -s y ) x.s ( z -s w ) ) e. ZZ_s ) ) |
56 |
53 55
|
syl5ibrcom |
|- ( ( ( x e. NN_s /\ z e. NN_s ) /\ ( y e. NN_s /\ w e. NN_s ) ) -> ( ( A = ( x -s y ) /\ B = ( z -s w ) ) -> ( A x.s B ) e. ZZ_s ) ) |
57 |
56
|
rexlimdvva |
|- ( ( x e. NN_s /\ z e. NN_s ) -> ( E. y e. NN_s E. w e. NN_s ( A = ( x -s y ) /\ B = ( z -s w ) ) -> ( A x.s B ) e. ZZ_s ) ) |
58 |
57
|
rexlimivv |
|- ( E. x e. NN_s E. z e. NN_s E. y e. NN_s E. w e. NN_s ( A = ( x -s y ) /\ B = ( z -s w ) ) -> ( A x.s B ) e. ZZ_s ) |
59 |
10 58
|
sylbir |
|- ( ( E. x e. NN_s E. y e. NN_s A = ( x -s y ) /\ E. z e. NN_s E. w e. NN_s B = ( z -s w ) ) -> ( A x.s B ) e. ZZ_s ) |
60 |
4 6 59
|
syl2anc |
|- ( ph -> ( A x.s B ) e. ZZ_s ) |