| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zmulscld.1 |
|
| 2 |
|
zmulscld.2 |
|
| 3 |
|
elzs |
|
| 4 |
1 3
|
sylib |
|
| 5 |
|
elzs |
|
| 6 |
2 5
|
sylib |
|
| 7 |
|
reeanv |
|
| 8 |
7
|
2rexbii |
|
| 9 |
|
reeanv |
|
| 10 |
8 9
|
bitri |
|
| 11 |
|
nnsno |
|
| 12 |
11
|
ad2antrr |
|
| 13 |
|
nnsno |
|
| 14 |
13
|
ad2antrl |
|
| 15 |
12 14
|
subscld |
|
| 16 |
|
nnsno |
|
| 17 |
16
|
ad2antlr |
|
| 18 |
|
nnsno |
|
| 19 |
18
|
ad2antll |
|
| 20 |
15 17 19
|
subsdid |
|
| 21 |
|
nnmulscl |
|
| 22 |
21
|
adantr |
|
| 23 |
22
|
nnsnod |
|
| 24 |
|
simprl |
|
| 25 |
|
simplr |
|
| 26 |
|
nnmulscl |
|
| 27 |
24 25 26
|
syl2anc |
|
| 28 |
27
|
nnsnod |
|
| 29 |
23 28
|
subscld |
|
| 30 |
|
nnmulscl |
|
| 31 |
30
|
ad2ant2rl |
|
| 32 |
31
|
nnsnod |
|
| 33 |
|
nnmulscl |
|
| 34 |
33
|
adantl |
|
| 35 |
34
|
nnsnod |
|
| 36 |
29 32 35
|
subsubs2d |
|
| 37 |
12 14 17
|
subsdird |
|
| 38 |
12 14 19
|
subsdird |
|
| 39 |
37 38
|
oveq12d |
|
| 40 |
23 35 28 32
|
addsubs4d |
|
| 41 |
36 39 40
|
3eqtr4d |
|
| 42 |
20 41
|
eqtrd |
|
| 43 |
|
nnaddscl |
|
| 44 |
22 34 43
|
syl2anc |
|
| 45 |
|
nnaddscl |
|
| 46 |
27 31 45
|
syl2anc |
|
| 47 |
|
eqid |
|
| 48 |
|
rspceov |
|
| 49 |
47 48
|
mp3an3 |
|
| 50 |
44 46 49
|
syl2anc |
|
| 51 |
|
elzs |
|
| 52 |
50 51
|
sylibr |
|
| 53 |
42 52
|
eqeltrd |
|
| 54 |
|
oveq12 |
|
| 55 |
54
|
eleq1d |
|
| 56 |
53 55
|
syl5ibrcom |
|
| 57 |
56
|
rexlimdvva |
|
| 58 |
57
|
rexlimivv |
|
| 59 |
10 58
|
sylbir |
|
| 60 |
4 6 59
|
syl2anc |
|