Metamath Proof Explorer


Theorem elzn0s

Description: A surreal integer is a surreal that is a non-negative integer or whose negative is a non-negative integer. (Contributed by Scott Fenton, 26-May-2025)

Ref Expression
Assertion elzn0s A s A No A 0s + s A 0s

Proof

Step Hyp Ref Expression
1 elzs A s n s m s A = n - s m
2 nnsno n s n No
3 nnsno m s m No
4 subscl n No m No n - s m No
5 2 3 4 syl2an n s m s n - s m No
6 sletric m No n No m s n n s m
7 3 2 6 syl2anr n s m s m s n n s m
8 nnn0s m s m 0s
9 nnn0s n s n 0s
10 n0subs m 0s n 0s m s n n - s m 0s
11 8 9 10 syl2anr n s m s m s n n - s m 0s
12 n0subs n 0s m 0s n s m m - s n 0s
13 9 8 12 syl2an n s m s n s m m - s n 0s
14 2 adantr n s m s n No
15 3 adantl n s m s m No
16 14 15 negsubsdi2d n s m s + s n - s m = m - s n
17 16 eleq1d n s m s + s n - s m 0s m - s n 0s
18 13 17 bitr4d n s m s n s m + s n - s m 0s
19 11 18 orbi12d n s m s m s n n s m n - s m 0s + s n - s m 0s
20 7 19 mpbid n s m s n - s m 0s + s n - s m 0s
21 5 20 jca n s m s n - s m No n - s m 0s + s n - s m 0s
22 eleq1 A = n - s m A No n - s m No
23 eleq1 A = n - s m A 0s n - s m 0s
24 fveq2 A = n - s m + s A = + s n - s m
25 24 eleq1d A = n - s m + s A 0s + s n - s m 0s
26 23 25 orbi12d A = n - s m A 0s + s A 0s n - s m 0s + s n - s m 0s
27 22 26 anbi12d A = n - s m A No A 0s + s A 0s n - s m No n - s m 0s + s n - s m 0s
28 21 27 syl5ibrcom n s m s A = n - s m A No A 0s + s A 0s
29 28 rexlimivv n s m s A = n - s m A No A 0s + s A 0s
30 n0p1nns A 0s A + s 1 s s
31 1nns 1 s s
32 31 a1i A 0s 1 s s
33 n0sno A 0s A No
34 1sno 1 s No
35 pncans A No 1 s No A + s 1 s - s 1 s = A
36 33 34 35 sylancl A 0s A + s 1 s - s 1 s = A
37 36 eqcomd A 0s A = A + s 1 s - s 1 s
38 rspceov A + s 1 s s 1 s s A = A + s 1 s - s 1 s n s m s A = n - s m
39 30 32 37 38 syl3anc A 0s n s m s A = n - s m
40 39 adantl A No A 0s n s m s A = n - s m
41 31 a1i A No + s A 0s 1 s s
42 34 a1i A No 1 s No
43 id A No A No
44 42 43 subsvald A No 1 s - s A = 1 s + s + s A
45 negscl A No + s A No
46 42 45 addscomd A No 1 s + s + s A = + s A + s 1 s
47 44 46 eqtrd A No 1 s - s A = + s A + s 1 s
48 47 adantr A No + s A 0s 1 s - s A = + s A + s 1 s
49 n0p1nns + s A 0s + s A + s 1 s s
50 49 adantl A No + s A 0s + s A + s 1 s s
51 48 50 eqeltrd A No + s A 0s 1 s - s A s
52 42 43 nncansd A No 1 s - s 1 s - s A = A
53 52 eqcomd A No A = 1 s - s 1 s - s A
54 53 adantr A No + s A 0s A = 1 s - s 1 s - s A
55 rspceov 1 s s 1 s - s A s A = 1 s - s 1 s - s A n s m s A = n - s m
56 41 51 54 55 syl3anc A No + s A 0s n s m s A = n - s m
57 40 56 jaodan A No A 0s + s A 0s n s m s A = n - s m
58 29 57 impbii n s m s A = n - s m A No A 0s + s A 0s
59 1 58 bitri A s A No A 0s + s A 0s