Step |
Hyp |
Ref |
Expression |
1 |
|
elzs |
|
2 |
|
nnsno |
|
3 |
|
nnsno |
|
4 |
|
subscl |
|
5 |
2 3 4
|
syl2an |
|
6 |
|
sletric |
|
7 |
3 2 6
|
syl2anr |
|
8 |
|
nnn0s |
|
9 |
|
nnn0s |
|
10 |
|
n0subs |
|
11 |
8 9 10
|
syl2anr |
|
12 |
|
n0subs |
|
13 |
9 8 12
|
syl2an |
|
14 |
2
|
adantr |
|
15 |
3
|
adantl |
|
16 |
14 15
|
negsubsdi2d |
|
17 |
16
|
eleq1d |
|
18 |
13 17
|
bitr4d |
|
19 |
11 18
|
orbi12d |
|
20 |
7 19
|
mpbid |
|
21 |
5 20
|
jca |
|
22 |
|
eleq1 |
|
23 |
|
eleq1 |
|
24 |
|
fveq2 |
|
25 |
24
|
eleq1d |
|
26 |
23 25
|
orbi12d |
|
27 |
22 26
|
anbi12d |
|
28 |
21 27
|
syl5ibrcom |
|
29 |
28
|
rexlimivv |
|
30 |
|
n0p1nns |
|
31 |
|
1nns |
|
32 |
31
|
a1i |
|
33 |
|
n0sno |
|
34 |
|
1sno |
|
35 |
|
pncans |
|
36 |
33 34 35
|
sylancl |
|
37 |
36
|
eqcomd |
|
38 |
|
rspceov |
|
39 |
30 32 37 38
|
syl3anc |
|
40 |
39
|
adantl |
|
41 |
31
|
a1i |
|
42 |
34
|
a1i |
|
43 |
|
id |
|
44 |
42 43
|
subsvald |
|
45 |
|
negscl |
|
46 |
42 45
|
addscomd |
|
47 |
44 46
|
eqtrd |
|
48 |
47
|
adantr |
|
49 |
|
n0p1nns |
|
50 |
49
|
adantl |
|
51 |
48 50
|
eqeltrd |
|
52 |
42 43
|
nncansd |
|
53 |
52
|
eqcomd |
|
54 |
53
|
adantr |
|
55 |
|
rspceov |
|
56 |
41 51 54 55
|
syl3anc |
|
57 |
40 56
|
jaodan |
|
58 |
29 57
|
impbii |
|
59 |
1 58
|
bitri |
|