| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elzs |
|
| 2 |
|
nnsno |
|
| 3 |
|
nnsno |
|
| 4 |
|
subscl |
|
| 5 |
2 3 4
|
syl2an |
|
| 6 |
|
sletric |
|
| 7 |
3 2 6
|
syl2anr |
|
| 8 |
|
nnn0s |
|
| 9 |
|
nnn0s |
|
| 10 |
|
n0subs |
|
| 11 |
8 9 10
|
syl2anr |
|
| 12 |
|
n0subs |
|
| 13 |
9 8 12
|
syl2an |
|
| 14 |
2
|
adantr |
|
| 15 |
3
|
adantl |
|
| 16 |
14 15
|
negsubsdi2d |
|
| 17 |
16
|
eleq1d |
|
| 18 |
13 17
|
bitr4d |
|
| 19 |
11 18
|
orbi12d |
|
| 20 |
7 19
|
mpbid |
|
| 21 |
5 20
|
jca |
|
| 22 |
|
eleq1 |
|
| 23 |
|
eleq1 |
|
| 24 |
|
fveq2 |
|
| 25 |
24
|
eleq1d |
|
| 26 |
23 25
|
orbi12d |
|
| 27 |
22 26
|
anbi12d |
|
| 28 |
21 27
|
syl5ibrcom |
|
| 29 |
28
|
rexlimivv |
|
| 30 |
|
n0p1nns |
|
| 31 |
|
1nns |
|
| 32 |
31
|
a1i |
|
| 33 |
|
n0sno |
|
| 34 |
|
1sno |
|
| 35 |
|
pncans |
|
| 36 |
33 34 35
|
sylancl |
|
| 37 |
36
|
eqcomd |
|
| 38 |
|
rspceov |
|
| 39 |
30 32 37 38
|
syl3anc |
|
| 40 |
39
|
adantl |
|
| 41 |
31
|
a1i |
|
| 42 |
34
|
a1i |
|
| 43 |
|
id |
|
| 44 |
42 43
|
subsvald |
|
| 45 |
|
negscl |
|
| 46 |
42 45
|
addscomd |
|
| 47 |
44 46
|
eqtrd |
|
| 48 |
47
|
adantr |
|
| 49 |
|
n0p1nns |
|
| 50 |
49
|
adantl |
|
| 51 |
48 50
|
eqeltrd |
|
| 52 |
42 43
|
nncansd |
|
| 53 |
52
|
eqcomd |
|
| 54 |
53
|
adantr |
|
| 55 |
|
rspceov |
|
| 56 |
41 51 54 55
|
syl3anc |
|
| 57 |
40 56
|
jaodan |
|
| 58 |
29 57
|
impbii |
|
| 59 |
1 58
|
bitri |
|