Metamath Proof Explorer


Theorem n0p1nns

Description: One plus a non-negative surreal integer is a positive surreal integer. (Contributed by Scott Fenton, 26-May-2025)

Ref Expression
Assertion n0p1nns A 0s A + s 1 s s

Proof

Step Hyp Ref Expression
1 oveq1 x = 0 s x + s 1 s = 0 s + s 1 s
2 1 eleq1d x = 0 s x + s 1 s s 0 s + s 1 s s
3 oveq1 x = y x + s 1 s = y + s 1 s
4 3 eleq1d x = y x + s 1 s s y + s 1 s s
5 oveq1 x = y + s 1 s x + s 1 s = y + s 1 s + s 1 s
6 5 eleq1d x = y + s 1 s x + s 1 s s y + s 1 s + s 1 s s
7 oveq1 x = A x + s 1 s = A + s 1 s
8 7 eleq1d x = A x + s 1 s s A + s 1 s s
9 1sno 1 s No
10 addslid 1 s No 0 s + s 1 s = 1 s
11 9 10 ax-mp 0 s + s 1 s = 1 s
12 1nns 1 s s
13 11 12 eqeltri 0 s + s 1 s s
14 peano2nns y + s 1 s s y + s 1 s + s 1 s s
15 14 a1i y 0s y + s 1 s s y + s 1 s + s 1 s s
16 2 4 6 8 13 15 n0sind A 0s A + s 1 s s