| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( x = 0s -> ( x +s 1s ) = ( 0s +s 1s ) ) |
| 2 |
1
|
eleq1d |
|- ( x = 0s -> ( ( x +s 1s ) e. NN_s <-> ( 0s +s 1s ) e. NN_s ) ) |
| 3 |
|
oveq1 |
|- ( x = y -> ( x +s 1s ) = ( y +s 1s ) ) |
| 4 |
3
|
eleq1d |
|- ( x = y -> ( ( x +s 1s ) e. NN_s <-> ( y +s 1s ) e. NN_s ) ) |
| 5 |
|
oveq1 |
|- ( x = ( y +s 1s ) -> ( x +s 1s ) = ( ( y +s 1s ) +s 1s ) ) |
| 6 |
5
|
eleq1d |
|- ( x = ( y +s 1s ) -> ( ( x +s 1s ) e. NN_s <-> ( ( y +s 1s ) +s 1s ) e. NN_s ) ) |
| 7 |
|
oveq1 |
|- ( x = A -> ( x +s 1s ) = ( A +s 1s ) ) |
| 8 |
7
|
eleq1d |
|- ( x = A -> ( ( x +s 1s ) e. NN_s <-> ( A +s 1s ) e. NN_s ) ) |
| 9 |
|
1sno |
|- 1s e. No |
| 10 |
|
addslid |
|- ( 1s e. No -> ( 0s +s 1s ) = 1s ) |
| 11 |
9 10
|
ax-mp |
|- ( 0s +s 1s ) = 1s |
| 12 |
|
1nns |
|- 1s e. NN_s |
| 13 |
11 12
|
eqeltri |
|- ( 0s +s 1s ) e. NN_s |
| 14 |
|
peano2nns |
|- ( ( y +s 1s ) e. NN_s -> ( ( y +s 1s ) +s 1s ) e. NN_s ) |
| 15 |
14
|
a1i |
|- ( y e. NN0_s -> ( ( y +s 1s ) e. NN_s -> ( ( y +s 1s ) +s 1s ) e. NN_s ) ) |
| 16 |
2 4 6 8 13 15
|
n0sind |
|- ( A e. NN0_s -> ( A +s 1s ) e. NN_s ) |