| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( x = 0s -> ( x +s 1s ) = ( 0s +s 1s ) ) | 
						
							| 2 | 1 | eleq1d |  |-  ( x = 0s -> ( ( x +s 1s ) e. NN_s <-> ( 0s +s 1s ) e. NN_s ) ) | 
						
							| 3 |  | oveq1 |  |-  ( x = y -> ( x +s 1s ) = ( y +s 1s ) ) | 
						
							| 4 | 3 | eleq1d |  |-  ( x = y -> ( ( x +s 1s ) e. NN_s <-> ( y +s 1s ) e. NN_s ) ) | 
						
							| 5 |  | oveq1 |  |-  ( x = ( y +s 1s ) -> ( x +s 1s ) = ( ( y +s 1s ) +s 1s ) ) | 
						
							| 6 | 5 | eleq1d |  |-  ( x = ( y +s 1s ) -> ( ( x +s 1s ) e. NN_s <-> ( ( y +s 1s ) +s 1s ) e. NN_s ) ) | 
						
							| 7 |  | oveq1 |  |-  ( x = A -> ( x +s 1s ) = ( A +s 1s ) ) | 
						
							| 8 | 7 | eleq1d |  |-  ( x = A -> ( ( x +s 1s ) e. NN_s <-> ( A +s 1s ) e. NN_s ) ) | 
						
							| 9 |  | 1sno |  |-  1s e. No | 
						
							| 10 |  | addslid |  |-  ( 1s e. No -> ( 0s +s 1s ) = 1s ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ( 0s +s 1s ) = 1s | 
						
							| 12 |  | 1nns |  |-  1s e. NN_s | 
						
							| 13 | 11 12 | eqeltri |  |-  ( 0s +s 1s ) e. NN_s | 
						
							| 14 |  | peano2nns |  |-  ( ( y +s 1s ) e. NN_s -> ( ( y +s 1s ) +s 1s ) e. NN_s ) | 
						
							| 15 | 14 | a1i |  |-  ( y e. NN0_s -> ( ( y +s 1s ) e. NN_s -> ( ( y +s 1s ) +s 1s ) e. NN_s ) ) | 
						
							| 16 | 2 4 6 8 13 15 | n0sind |  |-  ( A e. NN0_s -> ( A +s 1s ) e. NN_s ) |