| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnns |
|- ( i e. NN_s <-> ( i e. NN0_s /\ i =/= 0s ) ) |
| 2 |
|
df-ne |
|- ( i =/= 0s <-> -. i = 0s ) |
| 3 |
|
n0s0suc |
|- ( i e. NN0_s -> ( i = 0s \/ E. j e. NN0_s i = ( j +s 1s ) ) ) |
| 4 |
3
|
ord |
|- ( i e. NN0_s -> ( -. i = 0s -> E. j e. NN0_s i = ( j +s 1s ) ) ) |
| 5 |
2 4
|
biimtrid |
|- ( i e. NN0_s -> ( i =/= 0s -> E. j e. NN0_s i = ( j +s 1s ) ) ) |
| 6 |
5
|
imp |
|- ( ( i e. NN0_s /\ i =/= 0s ) -> E. j e. NN0_s i = ( j +s 1s ) ) |
| 7 |
|
oveq1 |
|- ( i = 0s -> ( i +s 1s ) = ( 0s +s 1s ) ) |
| 8 |
|
1sno |
|- 1s e. No |
| 9 |
|
addslid |
|- ( 1s e. No -> ( 0s +s 1s ) = 1s ) |
| 10 |
8 9
|
ax-mp |
|- ( 0s +s 1s ) = 1s |
| 11 |
7 10
|
eqtrdi |
|- ( i = 0s -> ( i +s 1s ) = 1s ) |
| 12 |
11
|
eqeq2d |
|- ( i = 0s -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = 1s ) ) |
| 13 |
12
|
rexbidv |
|- ( i = 0s -> ( E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = 1s ) ) |
| 14 |
|
oveq1 |
|- ( i = k -> ( i +s 1s ) = ( k +s 1s ) ) |
| 15 |
14
|
eqeq2d |
|- ( i = k -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( k +s 1s ) ) ) |
| 16 |
15
|
rexbidv |
|- ( i = k -> ( E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( k +s 1s ) ) ) |
| 17 |
|
oveq1 |
|- ( i = ( k +s 1s ) -> ( i +s 1s ) = ( ( k +s 1s ) +s 1s ) ) |
| 18 |
17
|
eqeq2d |
|- ( i = ( k +s 1s ) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( ( k +s 1s ) +s 1s ) ) ) |
| 19 |
18
|
rexbidv |
|- ( i = ( k +s 1s ) -> ( E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( ( k +s 1s ) +s 1s ) ) ) |
| 20 |
|
fveqeq2 |
|- ( y = z -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( ( k +s 1s ) +s 1s ) <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( k +s 1s ) +s 1s ) ) ) |
| 21 |
20
|
cbvrexvw |
|- ( E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( ( k +s 1s ) +s 1s ) <-> E. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( k +s 1s ) +s 1s ) ) |
| 22 |
19 21
|
bitrdi |
|- ( i = ( k +s 1s ) -> ( E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> E. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( k +s 1s ) +s 1s ) ) ) |
| 23 |
|
oveq1 |
|- ( i = j -> ( i +s 1s ) = ( j +s 1s ) ) |
| 24 |
23
|
eqeq2d |
|- ( i = j -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( j +s 1s ) ) ) |
| 25 |
24
|
rexbidv |
|- ( i = j -> ( E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( j +s 1s ) ) ) |
| 26 |
|
peano1 |
|- (/) e. _om |
| 27 |
|
1nns |
|- 1s e. NN_s |
| 28 |
|
fr0g |
|- ( 1s e. NN_s -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` (/) ) = 1s ) |
| 29 |
27 28
|
ax-mp |
|- ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` (/) ) = 1s |
| 30 |
|
fveqeq2 |
|- ( y = (/) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = 1s <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` (/) ) = 1s ) ) |
| 31 |
30
|
rspcev |
|- ( ( (/) e. _om /\ ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` (/) ) = 1s ) -> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = 1s ) |
| 32 |
26 29 31
|
mp2an |
|- E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = 1s |
| 33 |
|
fveqeq2 |
|- ( z = suc y -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc y ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) ) ) |
| 34 |
|
peano2 |
|- ( y e. _om -> suc y e. _om ) |
| 35 |
|
ovex |
|- ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) e. _V |
| 36 |
|
eqid |
|- ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) |
| 37 |
|
oveq1 |
|- ( z = x -> ( z +s 1s ) = ( x +s 1s ) ) |
| 38 |
|
oveq1 |
|- ( z = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) -> ( z +s 1s ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) ) |
| 39 |
36 37 38
|
frsucmpt2 |
|- ( ( y e. _om /\ ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) e. _V ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc y ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) ) |
| 40 |
35 39
|
mpan2 |
|- ( y e. _om -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc y ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) ) |
| 41 |
33 34 40
|
rspcedvdw |
|- ( y e. _om -> E. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) ) |
| 42 |
41
|
adantl |
|- ( ( k e. NN0_s /\ y e. _om ) -> E. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) ) |
| 43 |
|
oveq1 |
|- ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( k +s 1s ) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) = ( ( k +s 1s ) +s 1s ) ) |
| 44 |
43
|
eqeq2d |
|- ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( k +s 1s ) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( k +s 1s ) +s 1s ) ) ) |
| 45 |
44
|
rexbidv |
|- ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( k +s 1s ) -> ( E. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) <-> E. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( k +s 1s ) +s 1s ) ) ) |
| 46 |
42 45
|
syl5ibcom |
|- ( ( k e. NN0_s /\ y e. _om ) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( k +s 1s ) -> E. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( k +s 1s ) +s 1s ) ) ) |
| 47 |
46
|
rexlimdva |
|- ( k e. NN0_s -> ( E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( k +s 1s ) -> E. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( k +s 1s ) +s 1s ) ) ) |
| 48 |
13 16 22 25 32 47
|
n0sind |
|- ( j e. NN0_s -> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( j +s 1s ) ) |
| 49 |
|
frfnom |
|- ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) Fn _om |
| 50 |
|
fvelrnb |
|- ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) Fn _om -> ( ( j +s 1s ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( j +s 1s ) ) ) |
| 51 |
49 50
|
ax-mp |
|- ( ( j +s 1s ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( j +s 1s ) ) |
| 52 |
48 51
|
sylibr |
|- ( j e. NN0_s -> ( j +s 1s ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ) |
| 53 |
|
df-ima |
|- ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) |
| 54 |
52 53
|
eleqtrrdi |
|- ( j e. NN0_s -> ( j +s 1s ) e. ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) ) |
| 55 |
|
eleq1 |
|- ( i = ( j +s 1s ) -> ( i e. ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) <-> ( j +s 1s ) e. ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) ) ) |
| 56 |
54 55
|
syl5ibrcom |
|- ( j e. NN0_s -> ( i = ( j +s 1s ) -> i e. ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) ) ) |
| 57 |
56
|
rexlimiv |
|- ( E. j e. NN0_s i = ( j +s 1s ) -> i e. ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) ) |
| 58 |
6 57
|
syl |
|- ( ( i e. NN0_s /\ i =/= 0s ) -> i e. ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) ) |
| 59 |
1 58
|
sylbi |
|- ( i e. NN_s -> i e. ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) ) |
| 60 |
59
|
ssriv |
|- NN_s C_ ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) |
| 61 |
|
fveq2 |
|- ( k = (/) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` k ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` (/) ) ) |
| 62 |
61
|
eleq1d |
|- ( k = (/) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` k ) e. NN_s <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` (/) ) e. NN_s ) ) |
| 63 |
|
fveq2 |
|- ( k = j -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` k ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) ) |
| 64 |
63
|
eleq1d |
|- ( k = j -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` k ) e. NN_s <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) e. NN_s ) ) |
| 65 |
|
fveq2 |
|- ( k = suc j -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` k ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc j ) ) |
| 66 |
65
|
eleq1d |
|- ( k = suc j -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` k ) e. NN_s <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc j ) e. NN_s ) ) |
| 67 |
|
fveq2 |
|- ( k = i -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` k ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` i ) ) |
| 68 |
67
|
eleq1d |
|- ( k = i -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` k ) e. NN_s <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` i ) e. NN_s ) ) |
| 69 |
29 27
|
eqeltri |
|- ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` (/) ) e. NN_s |
| 70 |
|
peano2nns |
|- ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) e. NN_s -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) +s 1s ) e. NN_s ) |
| 71 |
|
ovex |
|- ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) +s 1s ) e. _V |
| 72 |
|
oveq1 |
|- ( y = x -> ( y +s 1s ) = ( x +s 1s ) ) |
| 73 |
|
oveq1 |
|- ( y = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) -> ( y +s 1s ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) +s 1s ) ) |
| 74 |
36 72 73
|
frsucmpt2 |
|- ( ( j e. _om /\ ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) +s 1s ) e. _V ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc j ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) +s 1s ) ) |
| 75 |
71 74
|
mpan2 |
|- ( j e. _om -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc j ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) +s 1s ) ) |
| 76 |
75
|
eleq1d |
|- ( j e. _om -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc j ) e. NN_s <-> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) +s 1s ) e. NN_s ) ) |
| 77 |
70 76
|
imbitrrid |
|- ( j e. _om -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) e. NN_s -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc j ) e. NN_s ) ) |
| 78 |
62 64 66 68 69 77
|
finds |
|- ( i e. _om -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` i ) e. NN_s ) |
| 79 |
78
|
rgen |
|- A. i e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` i ) e. NN_s |
| 80 |
|
fnfvrnss |
|- ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) Fn _om /\ A. i e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` i ) e. NN_s ) -> ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) C_ NN_s ) |
| 81 |
49 79 80
|
mp2an |
|- ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) C_ NN_s |
| 82 |
53 81
|
eqsstri |
|- ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) C_ NN_s |
| 83 |
60 82
|
eqssi |
|- NN_s = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) |