| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnns |  |-  ( i e. NN_s <-> ( i e. NN0_s /\ i =/= 0s ) ) | 
						
							| 2 |  | df-ne |  |-  ( i =/= 0s <-> -. i = 0s ) | 
						
							| 3 |  | n0s0suc |  |-  ( i e. NN0_s -> ( i = 0s \/ E. j e. NN0_s i = ( j +s 1s ) ) ) | 
						
							| 4 | 3 | ord |  |-  ( i e. NN0_s -> ( -. i = 0s -> E. j e. NN0_s i = ( j +s 1s ) ) ) | 
						
							| 5 | 2 4 | biimtrid |  |-  ( i e. NN0_s -> ( i =/= 0s -> E. j e. NN0_s i = ( j +s 1s ) ) ) | 
						
							| 6 | 5 | imp |  |-  ( ( i e. NN0_s /\ i =/= 0s ) -> E. j e. NN0_s i = ( j +s 1s ) ) | 
						
							| 7 |  | oveq1 |  |-  ( i = 0s -> ( i +s 1s ) = ( 0s +s 1s ) ) | 
						
							| 8 |  | 1sno |  |-  1s e. No | 
						
							| 9 |  | addslid |  |-  ( 1s e. No -> ( 0s +s 1s ) = 1s ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( 0s +s 1s ) = 1s | 
						
							| 11 | 7 10 | eqtrdi |  |-  ( i = 0s -> ( i +s 1s ) = 1s ) | 
						
							| 12 | 11 | eqeq2d |  |-  ( i = 0s -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = 1s ) ) | 
						
							| 13 | 12 | rexbidv |  |-  ( i = 0s -> ( E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = 1s ) ) | 
						
							| 14 |  | oveq1 |  |-  ( i = k -> ( i +s 1s ) = ( k +s 1s ) ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( i = k -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( k +s 1s ) ) ) | 
						
							| 16 | 15 | rexbidv |  |-  ( i = k -> ( E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( k +s 1s ) ) ) | 
						
							| 17 |  | oveq1 |  |-  ( i = ( k +s 1s ) -> ( i +s 1s ) = ( ( k +s 1s ) +s 1s ) ) | 
						
							| 18 | 17 | eqeq2d |  |-  ( i = ( k +s 1s ) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( ( k +s 1s ) +s 1s ) ) ) | 
						
							| 19 | 18 | rexbidv |  |-  ( i = ( k +s 1s ) -> ( E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( ( k +s 1s ) +s 1s ) ) ) | 
						
							| 20 |  | fveqeq2 |  |-  ( y = z -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( ( k +s 1s ) +s 1s ) <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( k +s 1s ) +s 1s ) ) ) | 
						
							| 21 | 20 | cbvrexvw |  |-  ( E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( ( k +s 1s ) +s 1s ) <-> E. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( k +s 1s ) +s 1s ) ) | 
						
							| 22 | 19 21 | bitrdi |  |-  ( i = ( k +s 1s ) -> ( E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> E. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( k +s 1s ) +s 1s ) ) ) | 
						
							| 23 |  | oveq1 |  |-  ( i = j -> ( i +s 1s ) = ( j +s 1s ) ) | 
						
							| 24 | 23 | eqeq2d |  |-  ( i = j -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( j +s 1s ) ) ) | 
						
							| 25 | 24 | rexbidv |  |-  ( i = j -> ( E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( i +s 1s ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( j +s 1s ) ) ) | 
						
							| 26 |  | peano1 |  |-  (/) e. _om | 
						
							| 27 |  | 1nns |  |-  1s e. NN_s | 
						
							| 28 |  | fr0g |  |-  ( 1s e. NN_s -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` (/) ) = 1s ) | 
						
							| 29 | 27 28 | ax-mp |  |-  ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` (/) ) = 1s | 
						
							| 30 |  | fveqeq2 |  |-  ( y = (/) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = 1s <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` (/) ) = 1s ) ) | 
						
							| 31 | 30 | rspcev |  |-  ( ( (/) e. _om /\ ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` (/) ) = 1s ) -> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = 1s ) | 
						
							| 32 | 26 29 31 | mp2an |  |-  E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = 1s | 
						
							| 33 |  | fveqeq2 |  |-  ( z = suc y -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc y ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) ) ) | 
						
							| 34 |  | peano2 |  |-  ( y e. _om -> suc y e. _om ) | 
						
							| 35 |  | ovex |  |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) e. _V | 
						
							| 36 |  | eqid |  |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) | 
						
							| 37 |  | oveq1 |  |-  ( z = x -> ( z +s 1s ) = ( x +s 1s ) ) | 
						
							| 38 |  | oveq1 |  |-  ( z = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) -> ( z +s 1s ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) ) | 
						
							| 39 | 36 37 38 | frsucmpt2 |  |-  ( ( y e. _om /\ ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) e. _V ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc y ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) ) | 
						
							| 40 | 35 39 | mpan2 |  |-  ( y e. _om -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc y ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) ) | 
						
							| 41 | 33 34 40 | rspcedvdw |  |-  ( y e. _om -> E. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) ) | 
						
							| 42 | 41 | adantl |  |-  ( ( k e. NN0_s /\ y e. _om ) -> E. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) ) | 
						
							| 43 |  | oveq1 |  |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( k +s 1s ) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) = ( ( k +s 1s ) +s 1s ) ) | 
						
							| 44 | 43 | eqeq2d |  |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( k +s 1s ) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( k +s 1s ) +s 1s ) ) ) | 
						
							| 45 | 44 | rexbidv |  |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( k +s 1s ) -> ( E. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) +s 1s ) <-> E. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( k +s 1s ) +s 1s ) ) ) | 
						
							| 46 | 42 45 | syl5ibcom |  |-  ( ( k e. NN0_s /\ y e. _om ) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( k +s 1s ) -> E. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( k +s 1s ) +s 1s ) ) ) | 
						
							| 47 | 46 | rexlimdva |  |-  ( k e. NN0_s -> ( E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( k +s 1s ) -> E. z e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` z ) = ( ( k +s 1s ) +s 1s ) ) ) | 
						
							| 48 | 13 16 22 25 32 47 | n0sind |  |-  ( j e. NN0_s -> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( j +s 1s ) ) | 
						
							| 49 |  | frfnom |  |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) Fn _om | 
						
							| 50 |  | fvelrnb |  |-  ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) Fn _om -> ( ( j +s 1s ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( j +s 1s ) ) ) | 
						
							| 51 | 49 50 | ax-mp |  |-  ( ( j +s 1s ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` y ) = ( j +s 1s ) ) | 
						
							| 52 | 48 51 | sylibr |  |-  ( j e. NN0_s -> ( j +s 1s ) e. ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ) | 
						
							| 53 |  | df-ima |  |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) | 
						
							| 54 | 52 53 | eleqtrrdi |  |-  ( j e. NN0_s -> ( j +s 1s ) e. ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) ) | 
						
							| 55 |  | eleq1 |  |-  ( i = ( j +s 1s ) -> ( i e. ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) <-> ( j +s 1s ) e. ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) ) ) | 
						
							| 56 | 54 55 | syl5ibrcom |  |-  ( j e. NN0_s -> ( i = ( j +s 1s ) -> i e. ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) ) ) | 
						
							| 57 | 56 | rexlimiv |  |-  ( E. j e. NN0_s i = ( j +s 1s ) -> i e. ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) ) | 
						
							| 58 | 6 57 | syl |  |-  ( ( i e. NN0_s /\ i =/= 0s ) -> i e. ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) ) | 
						
							| 59 | 1 58 | sylbi |  |-  ( i e. NN_s -> i e. ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) ) | 
						
							| 60 | 59 | ssriv |  |-  NN_s C_ ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) | 
						
							| 61 |  | fveq2 |  |-  ( k = (/) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` k ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` (/) ) ) | 
						
							| 62 | 61 | eleq1d |  |-  ( k = (/) -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` k ) e. NN_s <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` (/) ) e. NN_s ) ) | 
						
							| 63 |  | fveq2 |  |-  ( k = j -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` k ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) ) | 
						
							| 64 | 63 | eleq1d |  |-  ( k = j -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` k ) e. NN_s <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) e. NN_s ) ) | 
						
							| 65 |  | fveq2 |  |-  ( k = suc j -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` k ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc j ) ) | 
						
							| 66 | 65 | eleq1d |  |-  ( k = suc j -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` k ) e. NN_s <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc j ) e. NN_s ) ) | 
						
							| 67 |  | fveq2 |  |-  ( k = i -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` k ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` i ) ) | 
						
							| 68 | 67 | eleq1d |  |-  ( k = i -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` k ) e. NN_s <-> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` i ) e. NN_s ) ) | 
						
							| 69 | 29 27 | eqeltri |  |-  ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` (/) ) e. NN_s | 
						
							| 70 |  | peano2nns |  |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) e. NN_s -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) +s 1s ) e. NN_s ) | 
						
							| 71 |  | ovex |  |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) +s 1s ) e. _V | 
						
							| 72 |  | oveq1 |  |-  ( y = x -> ( y +s 1s ) = ( x +s 1s ) ) | 
						
							| 73 |  | oveq1 |  |-  ( y = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) -> ( y +s 1s ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) +s 1s ) ) | 
						
							| 74 | 36 72 73 | frsucmpt2 |  |-  ( ( j e. _om /\ ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) +s 1s ) e. _V ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc j ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) +s 1s ) ) | 
						
							| 75 | 71 74 | mpan2 |  |-  ( j e. _om -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc j ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) +s 1s ) ) | 
						
							| 76 | 75 | eleq1d |  |-  ( j e. _om -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc j ) e. NN_s <-> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) +s 1s ) e. NN_s ) ) | 
						
							| 77 | 70 76 | imbitrrid |  |-  ( j e. _om -> ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` j ) e. NN_s -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` suc j ) e. NN_s ) ) | 
						
							| 78 | 62 64 66 68 69 77 | finds |  |-  ( i e. _om -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` i ) e. NN_s ) | 
						
							| 79 | 78 | rgen |  |-  A. i e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` i ) e. NN_s | 
						
							| 80 |  | fnfvrnss |  |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) Fn _om /\ A. i e. _om ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) ` i ) e. NN_s ) -> ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) C_ NN_s ) | 
						
							| 81 | 49 79 80 | mp2an |  |-  ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) |` _om ) C_ NN_s | 
						
							| 82 | 53 81 | eqsstri |  |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) C_ NN_s | 
						
							| 83 | 60 82 | eqssi |  |-  NN_s = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) |