| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnns | ⊢ ( 𝑖  ∈  ℕs  ↔  ( 𝑖  ∈  ℕ0s  ∧  𝑖  ≠   0s  ) ) | 
						
							| 2 |  | df-ne | ⊢ ( 𝑖  ≠   0s   ↔  ¬  𝑖  =   0s  ) | 
						
							| 3 |  | n0s0suc | ⊢ ( 𝑖  ∈  ℕ0s  →  ( 𝑖  =   0s   ∨  ∃ 𝑗  ∈  ℕ0s 𝑖  =  ( 𝑗  +s   1s  ) ) ) | 
						
							| 4 | 3 | ord | ⊢ ( 𝑖  ∈  ℕ0s  →  ( ¬  𝑖  =   0s   →  ∃ 𝑗  ∈  ℕ0s 𝑖  =  ( 𝑗  +s   1s  ) ) ) | 
						
							| 5 | 2 4 | biimtrid | ⊢ ( 𝑖  ∈  ℕ0s  →  ( 𝑖  ≠   0s   →  ∃ 𝑗  ∈  ℕ0s 𝑖  =  ( 𝑗  +s   1s  ) ) ) | 
						
							| 6 | 5 | imp | ⊢ ( ( 𝑖  ∈  ℕ0s  ∧  𝑖  ≠   0s  )  →  ∃ 𝑗  ∈  ℕ0s 𝑖  =  ( 𝑗  +s   1s  ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑖  =   0s   →  ( 𝑖  +s   1s  )  =  (  0s   +s   1s  ) ) | 
						
							| 8 |  | 1sno | ⊢  1s   ∈   No | 
						
							| 9 |  | addslid | ⊢ (  1s   ∈   No   →  (  0s   +s   1s  )  =   1s  ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ (  0s   +s   1s  )  =   1s | 
						
							| 11 | 7 10 | eqtrdi | ⊢ ( 𝑖  =   0s   →  ( 𝑖  +s   1s  )  =   1s  ) | 
						
							| 12 | 11 | eqeq2d | ⊢ ( 𝑖  =   0s   →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑖  +s   1s  )  ↔  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =   1s  ) ) | 
						
							| 13 | 12 | rexbidv | ⊢ ( 𝑖  =   0s   →  ( ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑖  +s   1s  )  ↔  ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =   1s  ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑖  =  𝑘  →  ( 𝑖  +s   1s  )  =  ( 𝑘  +s   1s  ) ) | 
						
							| 15 | 14 | eqeq2d | ⊢ ( 𝑖  =  𝑘  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑖  +s   1s  )  ↔  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑘  +s   1s  ) ) ) | 
						
							| 16 | 15 | rexbidv | ⊢ ( 𝑖  =  𝑘  →  ( ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑖  +s   1s  )  ↔  ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑘  +s   1s  ) ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑖  =  ( 𝑘  +s   1s  )  →  ( 𝑖  +s   1s  )  =  ( ( 𝑘  +s   1s  )  +s   1s  ) ) | 
						
							| 18 | 17 | eqeq2d | ⊢ ( 𝑖  =  ( 𝑘  +s   1s  )  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑖  +s   1s  )  ↔  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( ( 𝑘  +s   1s  )  +s   1s  ) ) ) | 
						
							| 19 | 18 | rexbidv | ⊢ ( 𝑖  =  ( 𝑘  +s   1s  )  →  ( ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑖  +s   1s  )  ↔  ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( ( 𝑘  +s   1s  )  +s   1s  ) ) ) | 
						
							| 20 |  | fveqeq2 | ⊢ ( 𝑦  =  𝑧  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( ( 𝑘  +s   1s  )  +s   1s  )  ↔  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑧 )  =  ( ( 𝑘  +s   1s  )  +s   1s  ) ) ) | 
						
							| 21 | 20 | cbvrexvw | ⊢ ( ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( ( 𝑘  +s   1s  )  +s   1s  )  ↔  ∃ 𝑧  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑧 )  =  ( ( 𝑘  +s   1s  )  +s   1s  ) ) | 
						
							| 22 | 19 21 | bitrdi | ⊢ ( 𝑖  =  ( 𝑘  +s   1s  )  →  ( ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑖  +s   1s  )  ↔  ∃ 𝑧  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑧 )  =  ( ( 𝑘  +s   1s  )  +s   1s  ) ) ) | 
						
							| 23 |  | oveq1 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑖  +s   1s  )  =  ( 𝑗  +s   1s  ) ) | 
						
							| 24 | 23 | eqeq2d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑖  +s   1s  )  ↔  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑗  +s   1s  ) ) ) | 
						
							| 25 | 24 | rexbidv | ⊢ ( 𝑖  =  𝑗  →  ( ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑖  +s   1s  )  ↔  ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑗  +s   1s  ) ) ) | 
						
							| 26 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 27 |  | 1nns | ⊢  1s   ∈  ℕs | 
						
							| 28 |  | fr0g | ⊢ (  1s   ∈  ℕs  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ ∅ )  =   1s  ) | 
						
							| 29 | 27 28 | ax-mp | ⊢ ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ ∅ )  =   1s | 
						
							| 30 |  | fveqeq2 | ⊢ ( 𝑦  =  ∅  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =   1s   ↔  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ ∅ )  =   1s  ) ) | 
						
							| 31 | 30 | rspcev | ⊢ ( ( ∅  ∈  ω  ∧  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ ∅ )  =   1s  )  →  ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =   1s  ) | 
						
							| 32 | 26 29 31 | mp2an | ⊢ ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =   1s | 
						
							| 33 |  | fveqeq2 | ⊢ ( 𝑧  =  suc  𝑦  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑧 )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  +s   1s  )  ↔  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ suc  𝑦 )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  +s   1s  ) ) ) | 
						
							| 34 |  | peano2 | ⊢ ( 𝑦  ∈  ω  →  suc  𝑦  ∈  ω ) | 
						
							| 35 |  | ovex | ⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  +s   1s  )  ∈  V | 
						
							| 36 |  | eqid | ⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω )  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) | 
						
							| 37 |  | oveq1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  +s   1s  )  =  ( 𝑥  +s   1s  ) ) | 
						
							| 38 |  | oveq1 | ⊢ ( 𝑧  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  →  ( 𝑧  +s   1s  )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  +s   1s  ) ) | 
						
							| 39 | 36 37 38 | frsucmpt2 | ⊢ ( ( 𝑦  ∈  ω  ∧  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  +s   1s  )  ∈  V )  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ suc  𝑦 )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  +s   1s  ) ) | 
						
							| 40 | 35 39 | mpan2 | ⊢ ( 𝑦  ∈  ω  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ suc  𝑦 )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  +s   1s  ) ) | 
						
							| 41 | 33 34 40 | rspcedvdw | ⊢ ( 𝑦  ∈  ω  →  ∃ 𝑧  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑧 )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  +s   1s  ) ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( 𝑘  ∈  ℕ0s  ∧  𝑦  ∈  ω )  →  ∃ 𝑧  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑧 )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  +s   1s  ) ) | 
						
							| 43 |  | oveq1 | ⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑘  +s   1s  )  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  +s   1s  )  =  ( ( 𝑘  +s   1s  )  +s   1s  ) ) | 
						
							| 44 | 43 | eqeq2d | ⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑘  +s   1s  )  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑧 )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  +s   1s  )  ↔  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑧 )  =  ( ( 𝑘  +s   1s  )  +s   1s  ) ) ) | 
						
							| 45 | 44 | rexbidv | ⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑘  +s   1s  )  →  ( ∃ 𝑧  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑧 )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  +s   1s  )  ↔  ∃ 𝑧  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑧 )  =  ( ( 𝑘  +s   1s  )  +s   1s  ) ) ) | 
						
							| 46 | 42 45 | syl5ibcom | ⊢ ( ( 𝑘  ∈  ℕ0s  ∧  𝑦  ∈  ω )  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑘  +s   1s  )  →  ∃ 𝑧  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑧 )  =  ( ( 𝑘  +s   1s  )  +s   1s  ) ) ) | 
						
							| 47 | 46 | rexlimdva | ⊢ ( 𝑘  ∈  ℕ0s  →  ( ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑘  +s   1s  )  →  ∃ 𝑧  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑧 )  =  ( ( 𝑘  +s   1s  )  +s   1s  ) ) ) | 
						
							| 48 | 13 16 22 25 32 47 | n0sind | ⊢ ( 𝑗  ∈  ℕ0s  →  ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑗  +s   1s  ) ) | 
						
							| 49 |  | frfnom | ⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω )  Fn  ω | 
						
							| 50 |  | fvelrnb | ⊢ ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω )  Fn  ω  →  ( ( 𝑗  +s   1s  )  ∈  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω )  ↔  ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑗  +s   1s  ) ) ) | 
						
							| 51 | 49 50 | ax-mp | ⊢ ( ( 𝑗  +s   1s  )  ∈  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω )  ↔  ∃ 𝑦  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑦 )  =  ( 𝑗  +s   1s  ) ) | 
						
							| 52 | 48 51 | sylibr | ⊢ ( 𝑗  ∈  ℕ0s  →  ( 𝑗  +s   1s  )  ∈  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ) | 
						
							| 53 |  | df-ima | ⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  “  ω )  =  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) | 
						
							| 54 | 52 53 | eleqtrrdi | ⊢ ( 𝑗  ∈  ℕ0s  →  ( 𝑗  +s   1s  )  ∈  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  “  ω ) ) | 
						
							| 55 |  | eleq1 | ⊢ ( 𝑖  =  ( 𝑗  +s   1s  )  →  ( 𝑖  ∈  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  “  ω )  ↔  ( 𝑗  +s   1s  )  ∈  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  “  ω ) ) ) | 
						
							| 56 | 54 55 | syl5ibrcom | ⊢ ( 𝑗  ∈  ℕ0s  →  ( 𝑖  =  ( 𝑗  +s   1s  )  →  𝑖  ∈  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  “  ω ) ) ) | 
						
							| 57 | 56 | rexlimiv | ⊢ ( ∃ 𝑗  ∈  ℕ0s 𝑖  =  ( 𝑗  +s   1s  )  →  𝑖  ∈  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  “  ω ) ) | 
						
							| 58 | 6 57 | syl | ⊢ ( ( 𝑖  ∈  ℕ0s  ∧  𝑖  ≠   0s  )  →  𝑖  ∈  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  “  ω ) ) | 
						
							| 59 | 1 58 | sylbi | ⊢ ( 𝑖  ∈  ℕs  →  𝑖  ∈  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  “  ω ) ) | 
						
							| 60 | 59 | ssriv | ⊢ ℕs  ⊆  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  “  ω ) | 
						
							| 61 |  | fveq2 | ⊢ ( 𝑘  =  ∅  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑘 )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ ∅ ) ) | 
						
							| 62 | 61 | eleq1d | ⊢ ( 𝑘  =  ∅  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑘 )  ∈  ℕs  ↔  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ ∅ )  ∈  ℕs ) ) | 
						
							| 63 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑘 )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑗 ) ) | 
						
							| 64 | 63 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑘 )  ∈  ℕs  ↔  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑗 )  ∈  ℕs ) ) | 
						
							| 65 |  | fveq2 | ⊢ ( 𝑘  =  suc  𝑗  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑘 )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ suc  𝑗 ) ) | 
						
							| 66 | 65 | eleq1d | ⊢ ( 𝑘  =  suc  𝑗  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑘 )  ∈  ℕs  ↔  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ suc  𝑗 )  ∈  ℕs ) ) | 
						
							| 67 |  | fveq2 | ⊢ ( 𝑘  =  𝑖  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑘 )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑖 ) ) | 
						
							| 68 | 67 | eleq1d | ⊢ ( 𝑘  =  𝑖  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑘 )  ∈  ℕs  ↔  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑖 )  ∈  ℕs ) ) | 
						
							| 69 | 29 27 | eqeltri | ⊢ ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ ∅ )  ∈  ℕs | 
						
							| 70 |  | peano2nns | ⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑗 )  ∈  ℕs  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑗 )  +s   1s  )  ∈  ℕs ) | 
						
							| 71 |  | ovex | ⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑗 )  +s   1s  )  ∈  V | 
						
							| 72 |  | oveq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  +s   1s  )  =  ( 𝑥  +s   1s  ) ) | 
						
							| 73 |  | oveq1 | ⊢ ( 𝑦  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑗 )  →  ( 𝑦  +s   1s  )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑗 )  +s   1s  ) ) | 
						
							| 74 | 36 72 73 | frsucmpt2 | ⊢ ( ( 𝑗  ∈  ω  ∧  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑗 )  +s   1s  )  ∈  V )  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ suc  𝑗 )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑗 )  +s   1s  ) ) | 
						
							| 75 | 71 74 | mpan2 | ⊢ ( 𝑗  ∈  ω  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ suc  𝑗 )  =  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑗 )  +s   1s  ) ) | 
						
							| 76 | 75 | eleq1d | ⊢ ( 𝑗  ∈  ω  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ suc  𝑗 )  ∈  ℕs  ↔  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑗 )  +s   1s  )  ∈  ℕs ) ) | 
						
							| 77 | 70 76 | imbitrrid | ⊢ ( 𝑗  ∈  ω  →  ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑗 )  ∈  ℕs  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ suc  𝑗 )  ∈  ℕs ) ) | 
						
							| 78 | 62 64 66 68 69 77 | finds | ⊢ ( 𝑖  ∈  ω  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑖 )  ∈  ℕs ) | 
						
							| 79 | 78 | rgen | ⊢ ∀ 𝑖  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑖 )  ∈  ℕs | 
						
							| 80 |  | fnfvrnss | ⊢ ( ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω )  Fn  ω  ∧  ∀ 𝑖  ∈  ω ( ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω ) ‘ 𝑖 )  ∈  ℕs )  →  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω )  ⊆  ℕs ) | 
						
							| 81 | 49 79 80 | mp2an | ⊢ ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  ↾  ω )  ⊆  ℕs | 
						
							| 82 | 53 81 | eqsstri | ⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  “  ω )  ⊆  ℕs | 
						
							| 83 | 60 82 | eqssi | ⊢ ℕs  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,   1s  )  “  ω ) |