Metamath Proof Explorer


Theorem dfnns2

Description: Alternate definition of the positive surreal integers. Compare df-nn . (Contributed by Scott Fenton, 6-Aug-2025)

Ref Expression
Assertion dfnns2 s = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω )

Proof

Step Hyp Ref Expression
1 elnns ( 𝑖 ∈ ℕs ↔ ( 𝑖 ∈ ℕ0s𝑖 ≠ 0s ) )
2 df-ne ( 𝑖 ≠ 0s ↔ ¬ 𝑖 = 0s )
3 n0s0suc ( 𝑖 ∈ ℕ0s → ( 𝑖 = 0s ∨ ∃ 𝑗 ∈ ℕ0s 𝑖 = ( 𝑗 +s 1s ) ) )
4 3 ord ( 𝑖 ∈ ℕ0s → ( ¬ 𝑖 = 0s → ∃ 𝑗 ∈ ℕ0s 𝑖 = ( 𝑗 +s 1s ) ) )
5 2 4 biimtrid ( 𝑖 ∈ ℕ0s → ( 𝑖 ≠ 0s → ∃ 𝑗 ∈ ℕ0s 𝑖 = ( 𝑗 +s 1s ) ) )
6 5 imp ( ( 𝑖 ∈ ℕ0s𝑖 ≠ 0s ) → ∃ 𝑗 ∈ ℕ0s 𝑖 = ( 𝑗 +s 1s ) )
7 oveq1 ( 𝑖 = 0s → ( 𝑖 +s 1s ) = ( 0s +s 1s ) )
8 1sno 1s No
9 addslid ( 1s No → ( 0s +s 1s ) = 1s )
10 8 9 ax-mp ( 0s +s 1s ) = 1s
11 7 10 eqtrdi ( 𝑖 = 0s → ( 𝑖 +s 1s ) = 1s )
12 11 eqeq2d ( 𝑖 = 0s → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = 1s ) )
13 12 rexbidv ( 𝑖 = 0s → ( ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = 1s ) )
14 oveq1 ( 𝑖 = 𝑘 → ( 𝑖 +s 1s ) = ( 𝑘 +s 1s ) )
15 14 eqeq2d ( 𝑖 = 𝑘 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑘 +s 1s ) ) )
16 15 rexbidv ( 𝑖 = 𝑘 → ( ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑘 +s 1s ) ) )
17 oveq1 ( 𝑖 = ( 𝑘 +s 1s ) → ( 𝑖 +s 1s ) = ( ( 𝑘 +s 1s ) +s 1s ) )
18 17 eqeq2d ( 𝑖 = ( 𝑘 +s 1s ) → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( ( 𝑘 +s 1s ) +s 1s ) ) )
19 18 rexbidv ( 𝑖 = ( 𝑘 +s 1s ) → ( ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( ( 𝑘 +s 1s ) +s 1s ) ) )
20 fveqeq2 ( 𝑦 = 𝑧 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( ( 𝑘 +s 1s ) +s 1s ) ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( 𝑘 +s 1s ) +s 1s ) ) )
21 20 cbvrexvw ( ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( ( 𝑘 +s 1s ) +s 1s ) ↔ ∃ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( 𝑘 +s 1s ) +s 1s ) )
22 19 21 bitrdi ( 𝑖 = ( 𝑘 +s 1s ) → ( ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ∃ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( 𝑘 +s 1s ) +s 1s ) ) )
23 oveq1 ( 𝑖 = 𝑗 → ( 𝑖 +s 1s ) = ( 𝑗 +s 1s ) )
24 23 eqeq2d ( 𝑖 = 𝑗 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑗 +s 1s ) ) )
25 24 rexbidv ( 𝑖 = 𝑗 → ( ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑗 +s 1s ) ) )
26 peano1 ∅ ∈ ω
27 1nns 1s ∈ ℕs
28 fr0g ( 1s ∈ ℕs → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ ∅ ) = 1s )
29 27 28 ax-mp ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ ∅ ) = 1s
30 fveqeq2 ( 𝑦 = ∅ → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = 1s ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ ∅ ) = 1s ) )
31 30 rspcev ( ( ∅ ∈ ω ∧ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ ∅ ) = 1s ) → ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = 1s )
32 26 29 31 mp2an 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = 1s
33 fveqeq2 ( 𝑧 = suc 𝑦 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑦 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ) )
34 peano2 ( 𝑦 ∈ ω → suc 𝑦 ∈ ω )
35 ovex ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ∈ V
36 eqid ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω )
37 oveq1 ( 𝑧 = 𝑥 → ( 𝑧 +s 1s ) = ( 𝑥 +s 1s ) )
38 oveq1 ( 𝑧 = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) → ( 𝑧 +s 1s ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) )
39 36 37 38 frsucmpt2 ( ( 𝑦 ∈ ω ∧ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ∈ V ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑦 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) )
40 35 39 mpan2 ( 𝑦 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑦 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) )
41 33 34 40 rspcedvdw ( 𝑦 ∈ ω → ∃ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) )
42 41 adantl ( ( 𝑘 ∈ ℕ0s𝑦 ∈ ω ) → ∃ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) )
43 oveq1 ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑘 +s 1s ) → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) = ( ( 𝑘 +s 1s ) +s 1s ) )
44 43 eqeq2d ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑘 +s 1s ) → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( 𝑘 +s 1s ) +s 1s ) ) )
45 44 rexbidv ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑘 +s 1s ) → ( ∃ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ↔ ∃ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( 𝑘 +s 1s ) +s 1s ) ) )
46 42 45 syl5ibcom ( ( 𝑘 ∈ ℕ0s𝑦 ∈ ω ) → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑘 +s 1s ) → ∃ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( 𝑘 +s 1s ) +s 1s ) ) )
47 46 rexlimdva ( 𝑘 ∈ ℕ0s → ( ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑘 +s 1s ) → ∃ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( 𝑘 +s 1s ) +s 1s ) ) )
48 13 16 22 25 32 47 n0sind ( 𝑗 ∈ ℕ0s → ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑗 +s 1s ) )
49 frfnom ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) Fn ω
50 fvelrnb ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) Fn ω → ( ( 𝑗 +s 1s ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑗 +s 1s ) ) )
51 49 50 ax-mp ( ( 𝑗 +s 1s ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑗 +s 1s ) )
52 48 51 sylibr ( 𝑗 ∈ ℕ0s → ( 𝑗 +s 1s ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) )
53 df-ima ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω )
54 52 53 eleqtrrdi ( 𝑗 ∈ ℕ0s → ( 𝑗 +s 1s ) ∈ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) )
55 eleq1 ( 𝑖 = ( 𝑗 +s 1s ) → ( 𝑖 ∈ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) ↔ ( 𝑗 +s 1s ) ∈ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) ) )
56 54 55 syl5ibrcom ( 𝑗 ∈ ℕ0s → ( 𝑖 = ( 𝑗 +s 1s ) → 𝑖 ∈ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) ) )
57 56 rexlimiv ( ∃ 𝑗 ∈ ℕ0s 𝑖 = ( 𝑗 +s 1s ) → 𝑖 ∈ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) )
58 6 57 syl ( ( 𝑖 ∈ ℕ0s𝑖 ≠ 0s ) → 𝑖 ∈ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) )
59 1 58 sylbi ( 𝑖 ∈ ℕs𝑖 ∈ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) )
60 59 ssriv s ⊆ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω )
61 fveq2 ( 𝑘 = ∅ → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑘 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ ∅ ) )
62 61 eleq1d ( 𝑘 = ∅ → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑘 ) ∈ ℕs ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ ∅ ) ∈ ℕs ) )
63 fveq2 ( 𝑘 = 𝑗 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑘 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) )
64 63 eleq1d ( 𝑘 = 𝑗 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑘 ) ∈ ℕs ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) ∈ ℕs ) )
65 fveq2 ( 𝑘 = suc 𝑗 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑘 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑗 ) )
66 65 eleq1d ( 𝑘 = suc 𝑗 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑘 ) ∈ ℕs ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑗 ) ∈ ℕs ) )
67 fveq2 ( 𝑘 = 𝑖 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑘 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑖 ) )
68 67 eleq1d ( 𝑘 = 𝑖 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑘 ) ∈ ℕs ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑖 ) ∈ ℕs ) )
69 29 27 eqeltri ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ ∅ ) ∈ ℕs
70 peano2nns ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) ∈ ℕs → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) +s 1s ) ∈ ℕs )
71 ovex ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) +s 1s ) ∈ V
72 oveq1 ( 𝑦 = 𝑥 → ( 𝑦 +s 1s ) = ( 𝑥 +s 1s ) )
73 oveq1 ( 𝑦 = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) → ( 𝑦 +s 1s ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) +s 1s ) )
74 36 72 73 frsucmpt2 ( ( 𝑗 ∈ ω ∧ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) +s 1s ) ∈ V ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑗 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) +s 1s ) )
75 71 74 mpan2 ( 𝑗 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑗 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) +s 1s ) )
76 75 eleq1d ( 𝑗 ∈ ω → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑗 ) ∈ ℕs ↔ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) +s 1s ) ∈ ℕs ) )
77 70 76 imbitrrid ( 𝑗 ∈ ω → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) ∈ ℕs → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑗 ) ∈ ℕs ) )
78 62 64 66 68 69 77 finds ( 𝑖 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑖 ) ∈ ℕs )
79 78 rgen 𝑖 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑖 ) ∈ ℕs
80 fnfvrnss ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) Fn ω ∧ ∀ 𝑖 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑖 ) ∈ ℕs ) → ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ⊆ ℕs )
81 49 79 80 mp2an ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ⊆ ℕs
82 53 81 eqsstri ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) ⊆ ℕs
83 60 82 eqssi s = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω )