| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnns |
⊢ ( 𝑖 ∈ ℕs ↔ ( 𝑖 ∈ ℕ0s ∧ 𝑖 ≠ 0s ) ) |
| 2 |
|
df-ne |
⊢ ( 𝑖 ≠ 0s ↔ ¬ 𝑖 = 0s ) |
| 3 |
|
n0s0suc |
⊢ ( 𝑖 ∈ ℕ0s → ( 𝑖 = 0s ∨ ∃ 𝑗 ∈ ℕ0s 𝑖 = ( 𝑗 +s 1s ) ) ) |
| 4 |
3
|
ord |
⊢ ( 𝑖 ∈ ℕ0s → ( ¬ 𝑖 = 0s → ∃ 𝑗 ∈ ℕ0s 𝑖 = ( 𝑗 +s 1s ) ) ) |
| 5 |
2 4
|
biimtrid |
⊢ ( 𝑖 ∈ ℕ0s → ( 𝑖 ≠ 0s → ∃ 𝑗 ∈ ℕ0s 𝑖 = ( 𝑗 +s 1s ) ) ) |
| 6 |
5
|
imp |
⊢ ( ( 𝑖 ∈ ℕ0s ∧ 𝑖 ≠ 0s ) → ∃ 𝑗 ∈ ℕ0s 𝑖 = ( 𝑗 +s 1s ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑖 = 0s → ( 𝑖 +s 1s ) = ( 0s +s 1s ) ) |
| 8 |
|
1sno |
⊢ 1s ∈ No |
| 9 |
|
addslid |
⊢ ( 1s ∈ No → ( 0s +s 1s ) = 1s ) |
| 10 |
8 9
|
ax-mp |
⊢ ( 0s +s 1s ) = 1s |
| 11 |
7 10
|
eqtrdi |
⊢ ( 𝑖 = 0s → ( 𝑖 +s 1s ) = 1s ) |
| 12 |
11
|
eqeq2d |
⊢ ( 𝑖 = 0s → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = 1s ) ) |
| 13 |
12
|
rexbidv |
⊢ ( 𝑖 = 0s → ( ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = 1s ) ) |
| 14 |
|
oveq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 +s 1s ) = ( 𝑘 +s 1s ) ) |
| 15 |
14
|
eqeq2d |
⊢ ( 𝑖 = 𝑘 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑘 +s 1s ) ) ) |
| 16 |
15
|
rexbidv |
⊢ ( 𝑖 = 𝑘 → ( ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑘 +s 1s ) ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝑖 = ( 𝑘 +s 1s ) → ( 𝑖 +s 1s ) = ( ( 𝑘 +s 1s ) +s 1s ) ) |
| 18 |
17
|
eqeq2d |
⊢ ( 𝑖 = ( 𝑘 +s 1s ) → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( ( 𝑘 +s 1s ) +s 1s ) ) ) |
| 19 |
18
|
rexbidv |
⊢ ( 𝑖 = ( 𝑘 +s 1s ) → ( ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( ( 𝑘 +s 1s ) +s 1s ) ) ) |
| 20 |
|
fveqeq2 |
⊢ ( 𝑦 = 𝑧 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( ( 𝑘 +s 1s ) +s 1s ) ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( 𝑘 +s 1s ) +s 1s ) ) ) |
| 21 |
20
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( ( 𝑘 +s 1s ) +s 1s ) ↔ ∃ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( 𝑘 +s 1s ) +s 1s ) ) |
| 22 |
19 21
|
bitrdi |
⊢ ( 𝑖 = ( 𝑘 +s 1s ) → ( ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ∃ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( 𝑘 +s 1s ) +s 1s ) ) ) |
| 23 |
|
oveq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 +s 1s ) = ( 𝑗 +s 1s ) ) |
| 24 |
23
|
eqeq2d |
⊢ ( 𝑖 = 𝑗 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑗 +s 1s ) ) ) |
| 25 |
24
|
rexbidv |
⊢ ( 𝑖 = 𝑗 → ( ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑖 +s 1s ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑗 +s 1s ) ) ) |
| 26 |
|
peano1 |
⊢ ∅ ∈ ω |
| 27 |
|
1nns |
⊢ 1s ∈ ℕs |
| 28 |
|
fr0g |
⊢ ( 1s ∈ ℕs → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ ∅ ) = 1s ) |
| 29 |
27 28
|
ax-mp |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ ∅ ) = 1s |
| 30 |
|
fveqeq2 |
⊢ ( 𝑦 = ∅ → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = 1s ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ ∅ ) = 1s ) ) |
| 31 |
30
|
rspcev |
⊢ ( ( ∅ ∈ ω ∧ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ ∅ ) = 1s ) → ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = 1s ) |
| 32 |
26 29 31
|
mp2an |
⊢ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = 1s |
| 33 |
|
fveqeq2 |
⊢ ( 𝑧 = suc 𝑦 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑦 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ) ) |
| 34 |
|
peano2 |
⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) |
| 35 |
|
ovex |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ∈ V |
| 36 |
|
eqid |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) |
| 37 |
|
oveq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 +s 1s ) = ( 𝑥 +s 1s ) ) |
| 38 |
|
oveq1 |
⊢ ( 𝑧 = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) → ( 𝑧 +s 1s ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ) |
| 39 |
36 37 38
|
frsucmpt2 |
⊢ ( ( 𝑦 ∈ ω ∧ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ∈ V ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑦 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ) |
| 40 |
35 39
|
mpan2 |
⊢ ( 𝑦 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑦 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ) |
| 41 |
33 34 40
|
rspcedvdw |
⊢ ( 𝑦 ∈ ω → ∃ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ0s ∧ 𝑦 ∈ ω ) → ∃ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ) |
| 43 |
|
oveq1 |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑘 +s 1s ) → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) = ( ( 𝑘 +s 1s ) +s 1s ) ) |
| 44 |
43
|
eqeq2d |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑘 +s 1s ) → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( 𝑘 +s 1s ) +s 1s ) ) ) |
| 45 |
44
|
rexbidv |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑘 +s 1s ) → ( ∃ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) +s 1s ) ↔ ∃ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( 𝑘 +s 1s ) +s 1s ) ) ) |
| 46 |
42 45
|
syl5ibcom |
⊢ ( ( 𝑘 ∈ ℕ0s ∧ 𝑦 ∈ ω ) → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑘 +s 1s ) → ∃ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( 𝑘 +s 1s ) +s 1s ) ) ) |
| 47 |
46
|
rexlimdva |
⊢ ( 𝑘 ∈ ℕ0s → ( ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑘 +s 1s ) → ∃ 𝑧 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑧 ) = ( ( 𝑘 +s 1s ) +s 1s ) ) ) |
| 48 |
13 16 22 25 32 47
|
n0sind |
⊢ ( 𝑗 ∈ ℕ0s → ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑗 +s 1s ) ) |
| 49 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) Fn ω |
| 50 |
|
fvelrnb |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) Fn ω → ( ( 𝑗 +s 1s ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑗 +s 1s ) ) ) |
| 51 |
49 50
|
ax-mp |
⊢ ( ( 𝑗 +s 1s ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑦 ) = ( 𝑗 +s 1s ) ) |
| 52 |
48 51
|
sylibr |
⊢ ( 𝑗 ∈ ℕ0s → ( 𝑗 +s 1s ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ) |
| 53 |
|
df-ima |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) |
| 54 |
52 53
|
eleqtrrdi |
⊢ ( 𝑗 ∈ ℕ0s → ( 𝑗 +s 1s ) ∈ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) ) |
| 55 |
|
eleq1 |
⊢ ( 𝑖 = ( 𝑗 +s 1s ) → ( 𝑖 ∈ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) ↔ ( 𝑗 +s 1s ) ∈ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) ) ) |
| 56 |
54 55
|
syl5ibrcom |
⊢ ( 𝑗 ∈ ℕ0s → ( 𝑖 = ( 𝑗 +s 1s ) → 𝑖 ∈ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) ) ) |
| 57 |
56
|
rexlimiv |
⊢ ( ∃ 𝑗 ∈ ℕ0s 𝑖 = ( 𝑗 +s 1s ) → 𝑖 ∈ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) ) |
| 58 |
6 57
|
syl |
⊢ ( ( 𝑖 ∈ ℕ0s ∧ 𝑖 ≠ 0s ) → 𝑖 ∈ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) ) |
| 59 |
1 58
|
sylbi |
⊢ ( 𝑖 ∈ ℕs → 𝑖 ∈ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) ) |
| 60 |
59
|
ssriv |
⊢ ℕs ⊆ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) |
| 61 |
|
fveq2 |
⊢ ( 𝑘 = ∅ → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑘 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ ∅ ) ) |
| 62 |
61
|
eleq1d |
⊢ ( 𝑘 = ∅ → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑘 ) ∈ ℕs ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ ∅ ) ∈ ℕs ) ) |
| 63 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑘 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) ) |
| 64 |
63
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑘 ) ∈ ℕs ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) ∈ ℕs ) ) |
| 65 |
|
fveq2 |
⊢ ( 𝑘 = suc 𝑗 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑘 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑗 ) ) |
| 66 |
65
|
eleq1d |
⊢ ( 𝑘 = suc 𝑗 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑘 ) ∈ ℕs ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑗 ) ∈ ℕs ) ) |
| 67 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑘 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑖 ) ) |
| 68 |
67
|
eleq1d |
⊢ ( 𝑘 = 𝑖 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑘 ) ∈ ℕs ↔ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑖 ) ∈ ℕs ) ) |
| 69 |
29 27
|
eqeltri |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ ∅ ) ∈ ℕs |
| 70 |
|
peano2nns |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) ∈ ℕs → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) +s 1s ) ∈ ℕs ) |
| 71 |
|
ovex |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) +s 1s ) ∈ V |
| 72 |
|
oveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 +s 1s ) = ( 𝑥 +s 1s ) ) |
| 73 |
|
oveq1 |
⊢ ( 𝑦 = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) → ( 𝑦 +s 1s ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) +s 1s ) ) |
| 74 |
36 72 73
|
frsucmpt2 |
⊢ ( ( 𝑗 ∈ ω ∧ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) +s 1s ) ∈ V ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑗 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) +s 1s ) ) |
| 75 |
71 74
|
mpan2 |
⊢ ( 𝑗 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑗 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) +s 1s ) ) |
| 76 |
75
|
eleq1d |
⊢ ( 𝑗 ∈ ω → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑗 ) ∈ ℕs ↔ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) +s 1s ) ∈ ℕs ) ) |
| 77 |
70 76
|
imbitrrid |
⊢ ( 𝑗 ∈ ω → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑗 ) ∈ ℕs → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ suc 𝑗 ) ∈ ℕs ) ) |
| 78 |
62 64 66 68 69 77
|
finds |
⊢ ( 𝑖 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑖 ) ∈ ℕs ) |
| 79 |
78
|
rgen |
⊢ ∀ 𝑖 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑖 ) ∈ ℕs |
| 80 |
|
fnfvrnss |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) Fn ω ∧ ∀ 𝑖 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ‘ 𝑖 ) ∈ ℕs ) → ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ⊆ ℕs ) |
| 81 |
49 79 80
|
mp2an |
⊢ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) ↾ ω ) ⊆ ℕs |
| 82 |
53 81
|
eqsstri |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) ⊆ ℕs |
| 83 |
60 82
|
eqssi |
⊢ ℕs = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) |