Metamath Proof Explorer


Theorem nnsind

Description: Principle of Mathematical Induction (inference schema). (Contributed by Scott Fenton, 6-Aug-2025)

Ref Expression
Hypotheses nnsind.1 ( 𝑥 = 1s → ( 𝜑𝜓 ) )
nnsind.2 ( 𝑥 = 𝑦 → ( 𝜑𝜒 ) )
nnsind.3 ( 𝑥 = ( 𝑦 +s 1s ) → ( 𝜑𝜃 ) )
nnsind.4 ( 𝑥 = 𝐴 → ( 𝜑𝜏 ) )
nnsind.5 𝜓
nnsind.6 ( 𝑦 ∈ ℕs → ( 𝜒𝜃 ) )
Assertion nnsind ( 𝐴 ∈ ℕs𝜏 )

Proof

Step Hyp Ref Expression
1 nnsind.1 ( 𝑥 = 1s → ( 𝜑𝜓 ) )
2 nnsind.2 ( 𝑥 = 𝑦 → ( 𝜑𝜒 ) )
3 nnsind.3 ( 𝑥 = ( 𝑦 +s 1s ) → ( 𝜑𝜃 ) )
4 nnsind.4 ( 𝑥 = 𝐴 → ( 𝜑𝜏 ) )
5 nnsind.5 𝜓
6 nnsind.6 ( 𝑦 ∈ ℕs → ( 𝜒𝜃 ) )
7 tru
8 dfnns2 s = ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 +s 1s ) ) , 1s ) “ ω )
9 8 a1i ( ⊤ → ℕs = ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 +s 1s ) ) , 1s ) “ ω ) )
10 1sno 1s No
11 10 a1i ( ⊤ → 1s No )
12 5 a1i ( ⊤ → 𝜓 )
13 6 adantl ( ( ⊤ ∧ 𝑦 ∈ ℕs ) → ( 𝜒𝜃 ) )
14 9 11 1 2 3 4 12 13 noseqinds ( ( ⊤ ∧ 𝐴 ∈ ℕs ) → 𝜏 )
15 7 14 mpan ( 𝐴 ∈ ℕs𝜏 )