| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnsind.1 | ⊢ ( 𝑥  =   1s   →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | nnsind.2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | nnsind.3 | ⊢ ( 𝑥  =  ( 𝑦  +s   1s  )  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 4 |  | nnsind.4 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜏 ) ) | 
						
							| 5 |  | nnsind.5 | ⊢ 𝜓 | 
						
							| 6 |  | nnsind.6 | ⊢ ( 𝑦  ∈  ℕs  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 7 |  | tru | ⊢ ⊤ | 
						
							| 8 |  | dfnns2 | ⊢ ℕs  =  ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +s   1s  ) ) ,   1s  )  “  ω ) | 
						
							| 9 | 8 | a1i | ⊢ ( ⊤  →  ℕs  =  ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +s   1s  ) ) ,   1s  )  “  ω ) ) | 
						
							| 10 |  | 1sno | ⊢  1s   ∈   No | 
						
							| 11 | 10 | a1i | ⊢ ( ⊤  →   1s   ∈   No  ) | 
						
							| 12 | 5 | a1i | ⊢ ( ⊤  →  𝜓 ) | 
						
							| 13 | 6 | adantl | ⊢ ( ( ⊤  ∧  𝑦  ∈  ℕs )  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 14 | 9 11 1 2 3 4 12 13 | noseqinds | ⊢ ( ( ⊤  ∧  𝐴  ∈  ℕs )  →  𝜏 ) | 
						
							| 15 | 7 14 | mpan | ⊢ ( 𝐴  ∈  ℕs  →  𝜏 ) |