Step |
Hyp |
Ref |
Expression |
1 |
|
nnsind.1 |
⊢ ( 𝑥 = 1s → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
nnsind.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
nnsind.3 |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( 𝜑 ↔ 𝜃 ) ) |
4 |
|
nnsind.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) |
5 |
|
nnsind.5 |
⊢ 𝜓 |
6 |
|
nnsind.6 |
⊢ ( 𝑦 ∈ ℕs → ( 𝜒 → 𝜃 ) ) |
7 |
|
tru |
⊢ ⊤ |
8 |
|
dfnns2 |
⊢ ℕs = ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 +s 1s ) ) , 1s ) “ ω ) |
9 |
8
|
a1i |
⊢ ( ⊤ → ℕs = ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 +s 1s ) ) , 1s ) “ ω ) ) |
10 |
|
1sno |
⊢ 1s ∈ No |
11 |
10
|
a1i |
⊢ ( ⊤ → 1s ∈ No ) |
12 |
5
|
a1i |
⊢ ( ⊤ → 𝜓 ) |
13 |
6
|
adantl |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ℕs ) → ( 𝜒 → 𝜃 ) ) |
14 |
9 11 1 2 3 4 12 13
|
noseqinds |
⊢ ( ( ⊤ ∧ 𝐴 ∈ ℕs ) → 𝜏 ) |
15 |
7 14
|
mpan |
⊢ ( 𝐴 ∈ ℕs → 𝜏 ) |