Metamath Proof Explorer


Theorem nnsind

Description: Principle of Mathematical Induction (inference schema). (Contributed by Scott Fenton, 6-Aug-2025)

Ref Expression
Hypotheses nnsind.1 x = 1 s φ ψ
nnsind.2 x = y φ χ
nnsind.3 x = y + s 1 s φ θ
nnsind.4 x = A φ τ
nnsind.5 ψ
nnsind.6 y s χ θ
Assertion nnsind A s τ

Proof

Step Hyp Ref Expression
1 nnsind.1 x = 1 s φ ψ
2 nnsind.2 x = y φ χ
3 nnsind.3 x = y + s 1 s φ θ
4 nnsind.4 x = A φ τ
5 nnsind.5 ψ
6 nnsind.6 y s χ θ
7 tru
8 dfnns2 s = rec n V n + s 1 s 1 s ω
9 8 a1i s = rec n V n + s 1 s 1 s ω
10 1sno 1 s No
11 10 a1i 1 s No
12 5 a1i ψ
13 6 adantl y s χ θ
14 9 11 1 2 3 4 12 13 noseqinds A s τ
15 7 14 mpan A s τ