Metamath Proof Explorer


Theorem nn1m1nns

Description: Every positive surreal integer is either one or a successor. (Contributed by Scott Fenton, 8-Nov-2025)

Ref Expression
Assertion nn1m1nns A s A = 1 s A - s 1 s s

Proof

Step Hyp Ref Expression
1 eqeq1 x = 1 s x = 1 s 1 s = 1 s
2 oveq1 x = 1 s x - s 1 s = 1 s - s 1 s
3 2 eleq1d x = 1 s x - s 1 s s 1 s - s 1 s s
4 1 3 orbi12d x = 1 s x = 1 s x - s 1 s s 1 s = 1 s 1 s - s 1 s s
5 eqeq1 x = y x = 1 s y = 1 s
6 oveq1 x = y x - s 1 s = y - s 1 s
7 6 eleq1d x = y x - s 1 s s y - s 1 s s
8 5 7 orbi12d x = y x = 1 s x - s 1 s s y = 1 s y - s 1 s s
9 eqeq1 x = y + s 1 s x = 1 s y + s 1 s = 1 s
10 oveq1 x = y + s 1 s x - s 1 s = y + s 1 s - s 1 s
11 10 eleq1d x = y + s 1 s x - s 1 s s y + s 1 s - s 1 s s
12 9 11 orbi12d x = y + s 1 s x = 1 s x - s 1 s s y + s 1 s = 1 s y + s 1 s - s 1 s s
13 eqeq1 x = A x = 1 s A = 1 s
14 oveq1 x = A x - s 1 s = A - s 1 s
15 14 eleq1d x = A x - s 1 s s A - s 1 s s
16 13 15 orbi12d x = A x = 1 s x - s 1 s s A = 1 s A - s 1 s s
17 eqid 1 s = 1 s
18 17 orci 1 s = 1 s 1 s - s 1 s s
19 nnsno y s y No
20 1sno 1 s No
21 pncans y No 1 s No y + s 1 s - s 1 s = y
22 19 20 21 sylancl y s y + s 1 s - s 1 s = y
23 id y s y s
24 22 23 eqeltrd y s y + s 1 s - s 1 s s
25 24 olcd y s y + s 1 s = 1 s y + s 1 s - s 1 s s
26 25 a1d y s y = 1 s y - s 1 s s y + s 1 s = 1 s y + s 1 s - s 1 s s
27 4 8 12 16 18 26 nnsind A s A = 1 s A - s 1 s s