| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
|- ( x = 1s -> ( x = 1s <-> 1s = 1s ) ) |
| 2 |
|
oveq1 |
|- ( x = 1s -> ( x -s 1s ) = ( 1s -s 1s ) ) |
| 3 |
2
|
eleq1d |
|- ( x = 1s -> ( ( x -s 1s ) e. NN_s <-> ( 1s -s 1s ) e. NN_s ) ) |
| 4 |
1 3
|
orbi12d |
|- ( x = 1s -> ( ( x = 1s \/ ( x -s 1s ) e. NN_s ) <-> ( 1s = 1s \/ ( 1s -s 1s ) e. NN_s ) ) ) |
| 5 |
|
eqeq1 |
|- ( x = y -> ( x = 1s <-> y = 1s ) ) |
| 6 |
|
oveq1 |
|- ( x = y -> ( x -s 1s ) = ( y -s 1s ) ) |
| 7 |
6
|
eleq1d |
|- ( x = y -> ( ( x -s 1s ) e. NN_s <-> ( y -s 1s ) e. NN_s ) ) |
| 8 |
5 7
|
orbi12d |
|- ( x = y -> ( ( x = 1s \/ ( x -s 1s ) e. NN_s ) <-> ( y = 1s \/ ( y -s 1s ) e. NN_s ) ) ) |
| 9 |
|
eqeq1 |
|- ( x = ( y +s 1s ) -> ( x = 1s <-> ( y +s 1s ) = 1s ) ) |
| 10 |
|
oveq1 |
|- ( x = ( y +s 1s ) -> ( x -s 1s ) = ( ( y +s 1s ) -s 1s ) ) |
| 11 |
10
|
eleq1d |
|- ( x = ( y +s 1s ) -> ( ( x -s 1s ) e. NN_s <-> ( ( y +s 1s ) -s 1s ) e. NN_s ) ) |
| 12 |
9 11
|
orbi12d |
|- ( x = ( y +s 1s ) -> ( ( x = 1s \/ ( x -s 1s ) e. NN_s ) <-> ( ( y +s 1s ) = 1s \/ ( ( y +s 1s ) -s 1s ) e. NN_s ) ) ) |
| 13 |
|
eqeq1 |
|- ( x = A -> ( x = 1s <-> A = 1s ) ) |
| 14 |
|
oveq1 |
|- ( x = A -> ( x -s 1s ) = ( A -s 1s ) ) |
| 15 |
14
|
eleq1d |
|- ( x = A -> ( ( x -s 1s ) e. NN_s <-> ( A -s 1s ) e. NN_s ) ) |
| 16 |
13 15
|
orbi12d |
|- ( x = A -> ( ( x = 1s \/ ( x -s 1s ) e. NN_s ) <-> ( A = 1s \/ ( A -s 1s ) e. NN_s ) ) ) |
| 17 |
|
eqid |
|- 1s = 1s |
| 18 |
17
|
orci |
|- ( 1s = 1s \/ ( 1s -s 1s ) e. NN_s ) |
| 19 |
|
nnsno |
|- ( y e. NN_s -> y e. No ) |
| 20 |
|
1sno |
|- 1s e. No |
| 21 |
|
pncans |
|- ( ( y e. No /\ 1s e. No ) -> ( ( y +s 1s ) -s 1s ) = y ) |
| 22 |
19 20 21
|
sylancl |
|- ( y e. NN_s -> ( ( y +s 1s ) -s 1s ) = y ) |
| 23 |
|
id |
|- ( y e. NN_s -> y e. NN_s ) |
| 24 |
22 23
|
eqeltrd |
|- ( y e. NN_s -> ( ( y +s 1s ) -s 1s ) e. NN_s ) |
| 25 |
24
|
olcd |
|- ( y e. NN_s -> ( ( y +s 1s ) = 1s \/ ( ( y +s 1s ) -s 1s ) e. NN_s ) ) |
| 26 |
25
|
a1d |
|- ( y e. NN_s -> ( ( y = 1s \/ ( y -s 1s ) e. NN_s ) -> ( ( y +s 1s ) = 1s \/ ( ( y +s 1s ) -s 1s ) e. NN_s ) ) ) |
| 27 |
4 8 12 16 18 26
|
nnsind |
|- ( A e. NN_s -> ( A = 1s \/ ( A -s 1s ) e. NN_s ) ) |