| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn1m1nns |
|- ( N e. NN_s -> ( N = 1s \/ ( N -s 1s ) e. NN_s ) ) |
| 2 |
|
nnsno |
|- ( N e. NN_s -> N e. No ) |
| 3 |
|
1sno |
|- 1s e. No |
| 4 |
3
|
a1i |
|- ( N e. NN_s -> 1s e. No ) |
| 5 |
2 4
|
subseq0d |
|- ( N e. NN_s -> ( ( N -s 1s ) = 0s <-> N = 1s ) ) |
| 6 |
5
|
orbi1d |
|- ( N e. NN_s -> ( ( ( N -s 1s ) = 0s \/ ( N -s 1s ) e. NN_s ) <-> ( N = 1s \/ ( N -s 1s ) e. NN_s ) ) ) |
| 7 |
1 6
|
mpbird |
|- ( N e. NN_s -> ( ( N -s 1s ) = 0s \/ ( N -s 1s ) e. NN_s ) ) |
| 8 |
7
|
orcomd |
|- ( N e. NN_s -> ( ( N -s 1s ) e. NN_s \/ ( N -s 1s ) = 0s ) ) |
| 9 |
|
eln0s |
|- ( ( N -s 1s ) e. NN0_s <-> ( ( N -s 1s ) e. NN_s \/ ( N -s 1s ) = 0s ) ) |
| 10 |
8 9
|
sylibr |
|- ( N e. NN_s -> ( N -s 1s ) e. NN0_s ) |