Metamath Proof Explorer


Theorem nnm1n0s

Description: A positive surreal integer minus one is a non-negative surreal integer. (Contributed by Scott Fenton, 8-Nov-2025)

Ref Expression
Assertion nnm1n0s
|- ( N e. NN_s -> ( N -s 1s ) e. NN0_s )

Proof

Step Hyp Ref Expression
1 nn1m1nns
 |-  ( N e. NN_s -> ( N = 1s \/ ( N -s 1s ) e. NN_s ) )
2 nnsno
 |-  ( N e. NN_s -> N e. No )
3 1sno
 |-  1s e. No
4 3 a1i
 |-  ( N e. NN_s -> 1s e. No )
5 2 4 subseq0d
 |-  ( N e. NN_s -> ( ( N -s 1s ) = 0s <-> N = 1s ) )
6 5 orbi1d
 |-  ( N e. NN_s -> ( ( ( N -s 1s ) = 0s \/ ( N -s 1s ) e. NN_s ) <-> ( N = 1s \/ ( N -s 1s ) e. NN_s ) ) )
7 1 6 mpbird
 |-  ( N e. NN_s -> ( ( N -s 1s ) = 0s \/ ( N -s 1s ) e. NN_s ) )
8 7 orcomd
 |-  ( N e. NN_s -> ( ( N -s 1s ) e. NN_s \/ ( N -s 1s ) = 0s ) )
9 eln0s
 |-  ( ( N -s 1s ) e. NN0_s <-> ( ( N -s 1s ) e. NN_s \/ ( N -s 1s ) = 0s ) )
10 8 9 sylibr
 |-  ( N e. NN_s -> ( N -s 1s ) e. NN0_s )