| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
|- ( m = 0s -> ( m = ( ( B x.s p ) +s q ) <-> 0s = ( ( B x.s p ) +s q ) ) ) |
| 2 |
1
|
anbi1d |
|- ( m = 0s -> ( ( m = ( ( B x.s p ) +s q ) /\ q ( 0s = ( ( B x.s p ) +s q ) /\ q |
| 3 |
2
|
2rexbidv |
|- ( m = 0s -> ( E. p e. NN0_s E. q e. NN0_s ( m = ( ( B x.s p ) +s q ) /\ q E. p e. NN0_s E. q e. NN0_s ( 0s = ( ( B x.s p ) +s q ) /\ q |
| 4 |
3
|
imbi2d |
|- ( m = 0s -> ( ( B e. NN_s -> E. p e. NN0_s E. q e. NN0_s ( m = ( ( B x.s p ) +s q ) /\ q ( B e. NN_s -> E. p e. NN0_s E. q e. NN0_s ( 0s = ( ( B x.s p ) +s q ) /\ q |
| 5 |
|
eqeq1 |
|- ( m = a -> ( m = ( ( B x.s p ) +s q ) <-> a = ( ( B x.s p ) +s q ) ) ) |
| 6 |
5
|
anbi1d |
|- ( m = a -> ( ( m = ( ( B x.s p ) +s q ) /\ q ( a = ( ( B x.s p ) +s q ) /\ q |
| 7 |
6
|
2rexbidv |
|- ( m = a -> ( E. p e. NN0_s E. q e. NN0_s ( m = ( ( B x.s p ) +s q ) /\ q E. p e. NN0_s E. q e. NN0_s ( a = ( ( B x.s p ) +s q ) /\ q |
| 8 |
7
|
imbi2d |
|- ( m = a -> ( ( B e. NN_s -> E. p e. NN0_s E. q e. NN0_s ( m = ( ( B x.s p ) +s q ) /\ q ( B e. NN_s -> E. p e. NN0_s E. q e. NN0_s ( a = ( ( B x.s p ) +s q ) /\ q |
| 9 |
|
eqeq1 |
|- ( m = ( a +s 1s ) -> ( m = ( ( B x.s p ) +s q ) <-> ( a +s 1s ) = ( ( B x.s p ) +s q ) ) ) |
| 10 |
9
|
anbi1d |
|- ( m = ( a +s 1s ) -> ( ( m = ( ( B x.s p ) +s q ) /\ q ( ( a +s 1s ) = ( ( B x.s p ) +s q ) /\ q |
| 11 |
10
|
2rexbidv |
|- ( m = ( a +s 1s ) -> ( E. p e. NN0_s E. q e. NN0_s ( m = ( ( B x.s p ) +s q ) /\ q E. p e. NN0_s E. q e. NN0_s ( ( a +s 1s ) = ( ( B x.s p ) +s q ) /\ q |
| 12 |
|
oveq2 |
|- ( p = r -> ( B x.s p ) = ( B x.s r ) ) |
| 13 |
12
|
oveq1d |
|- ( p = r -> ( ( B x.s p ) +s q ) = ( ( B x.s r ) +s q ) ) |
| 14 |
13
|
eqeq2d |
|- ( p = r -> ( ( a +s 1s ) = ( ( B x.s p ) +s q ) <-> ( a +s 1s ) = ( ( B x.s r ) +s q ) ) ) |
| 15 |
14
|
anbi1d |
|- ( p = r -> ( ( ( a +s 1s ) = ( ( B x.s p ) +s q ) /\ q ( ( a +s 1s ) = ( ( B x.s r ) +s q ) /\ q |
| 16 |
|
oveq2 |
|- ( q = s -> ( ( B x.s r ) +s q ) = ( ( B x.s r ) +s s ) ) |
| 17 |
16
|
eqeq2d |
|- ( q = s -> ( ( a +s 1s ) = ( ( B x.s r ) +s q ) <-> ( a +s 1s ) = ( ( B x.s r ) +s s ) ) ) |
| 18 |
|
breq1 |
|- ( q = s -> ( q s |
| 19 |
17 18
|
anbi12d |
|- ( q = s -> ( ( ( a +s 1s ) = ( ( B x.s r ) +s q ) /\ q ( ( a +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 20 |
15 19
|
cbvrex2vw |
|- ( E. p e. NN0_s E. q e. NN0_s ( ( a +s 1s ) = ( ( B x.s p ) +s q ) /\ q E. r e. NN0_s E. s e. NN0_s ( ( a +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 21 |
11 20
|
bitrdi |
|- ( m = ( a +s 1s ) -> ( E. p e. NN0_s E. q e. NN0_s ( m = ( ( B x.s p ) +s q ) /\ q E. r e. NN0_s E. s e. NN0_s ( ( a +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 22 |
21
|
imbi2d |
|- ( m = ( a +s 1s ) -> ( ( B e. NN_s -> E. p e. NN0_s E. q e. NN0_s ( m = ( ( B x.s p ) +s q ) /\ q ( B e. NN_s -> E. r e. NN0_s E. s e. NN0_s ( ( a +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 23 |
|
eqeq1 |
|- ( m = A -> ( m = ( ( B x.s p ) +s q ) <-> A = ( ( B x.s p ) +s q ) ) ) |
| 24 |
23
|
anbi1d |
|- ( m = A -> ( ( m = ( ( B x.s p ) +s q ) /\ q ( A = ( ( B x.s p ) +s q ) /\ q |
| 25 |
24
|
2rexbidv |
|- ( m = A -> ( E. p e. NN0_s E. q e. NN0_s ( m = ( ( B x.s p ) +s q ) /\ q E. p e. NN0_s E. q e. NN0_s ( A = ( ( B x.s p ) +s q ) /\ q |
| 26 |
25
|
imbi2d |
|- ( m = A -> ( ( B e. NN_s -> E. p e. NN0_s E. q e. NN0_s ( m = ( ( B x.s p ) +s q ) /\ q ( B e. NN_s -> E. p e. NN0_s E. q e. NN0_s ( A = ( ( B x.s p ) +s q ) /\ q |
| 27 |
|
nnsno |
|- ( B e. NN_s -> B e. No ) |
| 28 |
|
muls01 |
|- ( B e. No -> ( B x.s 0s ) = 0s ) |
| 29 |
27 28
|
syl |
|- ( B e. NN_s -> ( B x.s 0s ) = 0s ) |
| 30 |
29
|
oveq1d |
|- ( B e. NN_s -> ( ( B x.s 0s ) +s 0s ) = ( 0s +s 0s ) ) |
| 31 |
|
0sno |
|- 0s e. No |
| 32 |
|
addslid |
|- ( 0s e. No -> ( 0s +s 0s ) = 0s ) |
| 33 |
31 32
|
ax-mp |
|- ( 0s +s 0s ) = 0s |
| 34 |
30 33
|
eqtr2di |
|- ( B e. NN_s -> 0s = ( ( B x.s 0s ) +s 0s ) ) |
| 35 |
|
nnsgt0 |
|- ( B e. NN_s -> 0s |
| 36 |
|
0n0s |
|- 0s e. NN0_s |
| 37 |
|
oveq2 |
|- ( p = 0s -> ( B x.s p ) = ( B x.s 0s ) ) |
| 38 |
37
|
oveq1d |
|- ( p = 0s -> ( ( B x.s p ) +s q ) = ( ( B x.s 0s ) +s q ) ) |
| 39 |
38
|
eqeq2d |
|- ( p = 0s -> ( 0s = ( ( B x.s p ) +s q ) <-> 0s = ( ( B x.s 0s ) +s q ) ) ) |
| 40 |
39
|
anbi1d |
|- ( p = 0s -> ( ( 0s = ( ( B x.s p ) +s q ) /\ q ( 0s = ( ( B x.s 0s ) +s q ) /\ q |
| 41 |
|
oveq2 |
|- ( q = 0s -> ( ( B x.s 0s ) +s q ) = ( ( B x.s 0s ) +s 0s ) ) |
| 42 |
41
|
eqeq2d |
|- ( q = 0s -> ( 0s = ( ( B x.s 0s ) +s q ) <-> 0s = ( ( B x.s 0s ) +s 0s ) ) ) |
| 43 |
|
breq1 |
|- ( q = 0s -> ( q 0s |
| 44 |
42 43
|
anbi12d |
|- ( q = 0s -> ( ( 0s = ( ( B x.s 0s ) +s q ) /\ q ( 0s = ( ( B x.s 0s ) +s 0s ) /\ 0s |
| 45 |
40 44
|
rspc2ev |
|- ( ( 0s e. NN0_s /\ 0s e. NN0_s /\ ( 0s = ( ( B x.s 0s ) +s 0s ) /\ 0s E. p e. NN0_s E. q e. NN0_s ( 0s = ( ( B x.s p ) +s q ) /\ q |
| 46 |
36 36 45
|
mp3an12 |
|- ( ( 0s = ( ( B x.s 0s ) +s 0s ) /\ 0s E. p e. NN0_s E. q e. NN0_s ( 0s = ( ( B x.s p ) +s q ) /\ q |
| 47 |
34 35 46
|
syl2anc |
|- ( B e. NN_s -> E. p e. NN0_s E. q e. NN0_s ( 0s = ( ( B x.s p ) +s q ) /\ q |
| 48 |
|
simprr |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> q e. NN0_s ) |
| 49 |
|
simplr |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> B e. NN_s ) |
| 50 |
|
nnm1n0s |
|- ( B e. NN_s -> ( B -s 1s ) e. NN0_s ) |
| 51 |
49 50
|
syl |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( B -s 1s ) e. NN0_s ) |
| 52 |
|
n0sleltp1 |
|- ( ( q e. NN0_s /\ ( B -s 1s ) e. NN0_s ) -> ( q <_s ( B -s 1s ) <-> q |
| 53 |
48 51 52
|
syl2anc |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( q <_s ( B -s 1s ) <-> q |
| 54 |
48
|
n0snod |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> q e. No ) |
| 55 |
51
|
n0snod |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( B -s 1s ) e. No ) |
| 56 |
|
sleloe |
|- ( ( q e. No /\ ( B -s 1s ) e. No ) -> ( q <_s ( B -s 1s ) <-> ( q |
| 57 |
54 55 56
|
syl2anc |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( q <_s ( B -s 1s ) <-> ( q |
| 58 |
49
|
nnsnod |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> B e. No ) |
| 59 |
|
1sno |
|- 1s e. No |
| 60 |
|
npcans |
|- ( ( B e. No /\ 1s e. No ) -> ( ( B -s 1s ) +s 1s ) = B ) |
| 61 |
58 59 60
|
sylancl |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( ( B -s 1s ) +s 1s ) = B ) |
| 62 |
61
|
breq2d |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( q q |
| 63 |
53 57 62
|
3bitr3rd |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( q ( q |
| 64 |
|
simplrl |
|- ( ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) /\ q p e. NN0_s ) |
| 65 |
|
simplrr |
|- ( ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) /\ q q e. NN0_s ) |
| 66 |
|
peano2n0s |
|- ( q e. NN0_s -> ( q +s 1s ) e. NN0_s ) |
| 67 |
65 66
|
syl |
|- ( ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) /\ q ( q +s 1s ) e. NN0_s ) |
| 68 |
49
|
nnn0sd |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> B e. NN0_s ) |
| 69 |
|
simprl |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> p e. NN0_s ) |
| 70 |
|
n0mulscl |
|- ( ( B e. NN0_s /\ p e. NN0_s ) -> ( B x.s p ) e. NN0_s ) |
| 71 |
68 69 70
|
syl2anc |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( B x.s p ) e. NN0_s ) |
| 72 |
71
|
n0snod |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( B x.s p ) e. No ) |
| 73 |
59
|
a1i |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> 1s e. No ) |
| 74 |
72 54 73
|
addsassd |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s p ) +s ( q +s 1s ) ) ) |
| 75 |
74
|
adantr |
|- ( ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) /\ q ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s p ) +s ( q +s 1s ) ) ) |
| 76 |
54 73 58
|
sltaddsubd |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( ( q +s 1s ) q |
| 77 |
76
|
biimpar |
|- ( ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) /\ q ( q +s 1s ) |
| 78 |
|
oveq2 |
|- ( r = p -> ( B x.s r ) = ( B x.s p ) ) |
| 79 |
78
|
oveq1d |
|- ( r = p -> ( ( B x.s r ) +s s ) = ( ( B x.s p ) +s s ) ) |
| 80 |
79
|
eqeq2d |
|- ( r = p -> ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s r ) +s s ) <-> ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s p ) +s s ) ) ) |
| 81 |
80
|
anbi1d |
|- ( r = p -> ( ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s p ) +s s ) /\ s |
| 82 |
|
oveq2 |
|- ( s = ( q +s 1s ) -> ( ( B x.s p ) +s s ) = ( ( B x.s p ) +s ( q +s 1s ) ) ) |
| 83 |
82
|
eqeq2d |
|- ( s = ( q +s 1s ) -> ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s p ) +s s ) <-> ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s p ) +s ( q +s 1s ) ) ) ) |
| 84 |
|
breq1 |
|- ( s = ( q +s 1s ) -> ( s ( q +s 1s ) |
| 85 |
83 84
|
anbi12d |
|- ( s = ( q +s 1s ) -> ( ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s p ) +s s ) /\ s ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s p ) +s ( q +s 1s ) ) /\ ( q +s 1s ) |
| 86 |
81 85
|
rspc2ev |
|- ( ( p e. NN0_s /\ ( q +s 1s ) e. NN0_s /\ ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s p ) +s ( q +s 1s ) ) /\ ( q +s 1s ) E. r e. NN0_s E. s e. NN0_s ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 87 |
64 67 75 77 86
|
syl112anc |
|- ( ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) /\ q E. r e. NN0_s E. s e. NN0_s ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 88 |
87
|
ex |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( q E. r e. NN0_s E. s e. NN0_s ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 89 |
|
peano2n0s |
|- ( p e. NN0_s -> ( p +s 1s ) e. NN0_s ) |
| 90 |
69 89
|
syl |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( p +s 1s ) e. NN0_s ) |
| 91 |
58
|
mulsridd |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( B x.s 1s ) = B ) |
| 92 |
91
|
oveq2d |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( ( B x.s p ) +s ( B x.s 1s ) ) = ( ( B x.s p ) +s B ) ) |
| 93 |
69
|
n0snod |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> p e. No ) |
| 94 |
58 93 73
|
addsdid |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( B x.s ( p +s 1s ) ) = ( ( B x.s p ) +s ( B x.s 1s ) ) ) |
| 95 |
61
|
oveq2d |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( ( B x.s p ) +s ( ( B -s 1s ) +s 1s ) ) = ( ( B x.s p ) +s B ) ) |
| 96 |
92 94 95
|
3eqtr4rd |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( ( B x.s p ) +s ( ( B -s 1s ) +s 1s ) ) = ( B x.s ( p +s 1s ) ) ) |
| 97 |
72 55 73
|
addsassd |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s p ) +s ( ( B -s 1s ) +s 1s ) ) ) |
| 98 |
|
peano2no |
|- ( p e. No -> ( p +s 1s ) e. No ) |
| 99 |
93 98
|
syl |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( p +s 1s ) e. No ) |
| 100 |
58 99
|
mulscld |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( B x.s ( p +s 1s ) ) e. No ) |
| 101 |
100
|
addsridd |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( ( B x.s ( p +s 1s ) ) +s 0s ) = ( B x.s ( p +s 1s ) ) ) |
| 102 |
96 97 101
|
3eqtr4d |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s ( p +s 1s ) ) +s 0s ) ) |
| 103 |
49 35
|
syl |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> 0s |
| 104 |
|
oveq2 |
|- ( r = ( p +s 1s ) -> ( B x.s r ) = ( B x.s ( p +s 1s ) ) ) |
| 105 |
104
|
oveq1d |
|- ( r = ( p +s 1s ) -> ( ( B x.s r ) +s s ) = ( ( B x.s ( p +s 1s ) ) +s s ) ) |
| 106 |
105
|
eqeq2d |
|- ( r = ( p +s 1s ) -> ( ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s r ) +s s ) <-> ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s ( p +s 1s ) ) +s s ) ) ) |
| 107 |
106
|
anbi1d |
|- ( r = ( p +s 1s ) -> ( ( ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s ( ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s ( p +s 1s ) ) +s s ) /\ s |
| 108 |
|
oveq2 |
|- ( s = 0s -> ( ( B x.s ( p +s 1s ) ) +s s ) = ( ( B x.s ( p +s 1s ) ) +s 0s ) ) |
| 109 |
108
|
eqeq2d |
|- ( s = 0s -> ( ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s ( p +s 1s ) ) +s s ) <-> ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s ( p +s 1s ) ) +s 0s ) ) ) |
| 110 |
|
breq1 |
|- ( s = 0s -> ( s 0s |
| 111 |
109 110
|
anbi12d |
|- ( s = 0s -> ( ( ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s ( p +s 1s ) ) +s s ) /\ s ( ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s ( p +s 1s ) ) +s 0s ) /\ 0s |
| 112 |
107 111
|
rspc2ev |
|- ( ( ( p +s 1s ) e. NN0_s /\ 0s e. NN0_s /\ ( ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s ( p +s 1s ) ) +s 0s ) /\ 0s E. r e. NN0_s E. s e. NN0_s ( ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 113 |
36 112
|
mp3an2 |
|- ( ( ( p +s 1s ) e. NN0_s /\ ( ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s ( p +s 1s ) ) +s 0s ) /\ 0s E. r e. NN0_s E. s e. NN0_s ( ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 114 |
90 102 103 113
|
syl12anc |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> E. r e. NN0_s E. s e. NN0_s ( ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 115 |
|
oveq2 |
|- ( q = ( B -s 1s ) -> ( ( B x.s p ) +s q ) = ( ( B x.s p ) +s ( B -s 1s ) ) ) |
| 116 |
115
|
oveq1d |
|- ( q = ( B -s 1s ) -> ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) ) |
| 117 |
116
|
eqeq1d |
|- ( q = ( B -s 1s ) -> ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s r ) +s s ) <-> ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s r ) +s s ) ) ) |
| 118 |
117
|
anbi1d |
|- ( q = ( B -s 1s ) -> ( ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s ( ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 119 |
118
|
2rexbidv |
|- ( q = ( B -s 1s ) -> ( E. r e. NN0_s E. s e. NN0_s ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s E. r e. NN0_s E. s e. NN0_s ( ( ( ( B x.s p ) +s ( B -s 1s ) ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 120 |
114 119
|
syl5ibrcom |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( q = ( B -s 1s ) -> E. r e. NN0_s E. s e. NN0_s ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 121 |
88 120
|
jaod |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( ( q E. r e. NN0_s E. s e. NN0_s ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 122 |
63 121
|
sylbid |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( q E. r e. NN0_s E. s e. NN0_s ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 123 |
|
oveq1 |
|- ( a = ( ( B x.s p ) +s q ) -> ( a +s 1s ) = ( ( ( B x.s p ) +s q ) +s 1s ) ) |
| 124 |
123
|
eqeq1d |
|- ( a = ( ( B x.s p ) +s q ) -> ( ( a +s 1s ) = ( ( B x.s r ) +s s ) <-> ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s r ) +s s ) ) ) |
| 125 |
124
|
anbi1d |
|- ( a = ( ( B x.s p ) +s q ) -> ( ( ( a +s 1s ) = ( ( B x.s r ) +s s ) /\ s ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 126 |
125
|
2rexbidv |
|- ( a = ( ( B x.s p ) +s q ) -> ( E. r e. NN0_s E. s e. NN0_s ( ( a +s 1s ) = ( ( B x.s r ) +s s ) /\ s E. r e. NN0_s E. s e. NN0_s ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 127 |
126
|
imbi2d |
|- ( a = ( ( B x.s p ) +s q ) -> ( ( q E. r e. NN0_s E. s e. NN0_s ( ( a +s 1s ) = ( ( B x.s r ) +s s ) /\ s ( q E. r e. NN0_s E. s e. NN0_s ( ( ( ( B x.s p ) +s q ) +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 128 |
122 127
|
syl5ibrcom |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( a = ( ( B x.s p ) +s q ) -> ( q E. r e. NN0_s E. s e. NN0_s ( ( a +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 129 |
128
|
impd |
|- ( ( ( a e. NN0_s /\ B e. NN_s ) /\ ( p e. NN0_s /\ q e. NN0_s ) ) -> ( ( a = ( ( B x.s p ) +s q ) /\ q E. r e. NN0_s E. s e. NN0_s ( ( a +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 130 |
129
|
rexlimdvva |
|- ( ( a e. NN0_s /\ B e. NN_s ) -> ( E. p e. NN0_s E. q e. NN0_s ( a = ( ( B x.s p ) +s q ) /\ q E. r e. NN0_s E. s e. NN0_s ( ( a +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 131 |
130
|
ex |
|- ( a e. NN0_s -> ( B e. NN_s -> ( E. p e. NN0_s E. q e. NN0_s ( a = ( ( B x.s p ) +s q ) /\ q E. r e. NN0_s E. s e. NN0_s ( ( a +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 132 |
131
|
a2d |
|- ( a e. NN0_s -> ( ( B e. NN_s -> E. p e. NN0_s E. q e. NN0_s ( a = ( ( B x.s p ) +s q ) /\ q ( B e. NN_s -> E. r e. NN0_s E. s e. NN0_s ( ( a +s 1s ) = ( ( B x.s r ) +s s ) /\ s |
| 133 |
4 8 22 26 47 132
|
n0sind |
|- ( A e. NN0_s -> ( B e. NN_s -> E. p e. NN0_s E. q e. NN0_s ( A = ( ( B x.s p ) +s q ) /\ q |
| 134 |
133
|
imp |
|- ( ( A e. NN0_s /\ B e. NN_s ) -> E. p e. NN0_s E. q e. NN0_s ( A = ( ( B x.s p ) +s q ) /\ q |