Step |
Hyp |
Ref |
Expression |
1 |
|
0sno |
|- 0s e. No |
2 |
|
mulsval |
|- ( ( A e. No /\ 0s e. No ) -> ( A x.s 0s ) = ( ( { a | E. p e. ( _Left ` A ) E. q e. ( _Left ` 0s ) a = ( ( ( p x.s 0s ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` A ) E. s e. ( _Right ` 0s ) b = ( ( ( r x.s 0s ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) |s ( { c | E. t e. ( _Left ` A ) E. u e. ( _Right ` 0s ) c = ( ( ( t x.s 0s ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` A ) E. w e. ( _Left ` 0s ) d = ( ( ( v x.s 0s ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) ) |
3 |
1 2
|
mpan2 |
|- ( A e. No -> ( A x.s 0s ) = ( ( { a | E. p e. ( _Left ` A ) E. q e. ( _Left ` 0s ) a = ( ( ( p x.s 0s ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` A ) E. s e. ( _Right ` 0s ) b = ( ( ( r x.s 0s ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) |s ( { c | E. t e. ( _Left ` A ) E. u e. ( _Right ` 0s ) c = ( ( ( t x.s 0s ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` A ) E. w e. ( _Left ` 0s ) d = ( ( ( v x.s 0s ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) ) |
4 |
|
rex0 |
|- -. E. q e. (/) a = ( ( ( p x.s 0s ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
5 |
|
left0s |
|- ( _Left ` 0s ) = (/) |
6 |
5
|
rexeqi |
|- ( E. q e. ( _Left ` 0s ) a = ( ( ( p x.s 0s ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. q e. (/) a = ( ( ( p x.s 0s ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) |
7 |
4 6
|
mtbir |
|- -. E. q e. ( _Left ` 0s ) a = ( ( ( p x.s 0s ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
8 |
7
|
a1i |
|- ( p e. ( _Left ` A ) -> -. E. q e. ( _Left ` 0s ) a = ( ( ( p x.s 0s ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) |
9 |
8
|
nrex |
|- -. E. p e. ( _Left ` A ) E. q e. ( _Left ` 0s ) a = ( ( ( p x.s 0s ) +s ( A x.s q ) ) -s ( p x.s q ) ) |
10 |
9
|
abf |
|- { a | E. p e. ( _Left ` A ) E. q e. ( _Left ` 0s ) a = ( ( ( p x.s 0s ) +s ( A x.s q ) ) -s ( p x.s q ) ) } = (/) |
11 |
|
rex0 |
|- -. E. s e. (/) b = ( ( ( r x.s 0s ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
12 |
|
right0s |
|- ( _Right ` 0s ) = (/) |
13 |
12
|
rexeqi |
|- ( E. s e. ( _Right ` 0s ) b = ( ( ( r x.s 0s ) +s ( A x.s s ) ) -s ( r x.s s ) ) <-> E. s e. (/) b = ( ( ( r x.s 0s ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) |
14 |
11 13
|
mtbir |
|- -. E. s e. ( _Right ` 0s ) b = ( ( ( r x.s 0s ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
15 |
14
|
a1i |
|- ( r e. ( _Right ` A ) -> -. E. s e. ( _Right ` 0s ) b = ( ( ( r x.s 0s ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) |
16 |
15
|
nrex |
|- -. E. r e. ( _Right ` A ) E. s e. ( _Right ` 0s ) b = ( ( ( r x.s 0s ) +s ( A x.s s ) ) -s ( r x.s s ) ) |
17 |
16
|
abf |
|- { b | E. r e. ( _Right ` A ) E. s e. ( _Right ` 0s ) b = ( ( ( r x.s 0s ) +s ( A x.s s ) ) -s ( r x.s s ) ) } = (/) |
18 |
10 17
|
uneq12i |
|- ( { a | E. p e. ( _Left ` A ) E. q e. ( _Left ` 0s ) a = ( ( ( p x.s 0s ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` A ) E. s e. ( _Right ` 0s ) b = ( ( ( r x.s 0s ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) = ( (/) u. (/) ) |
19 |
|
un0 |
|- ( (/) u. (/) ) = (/) |
20 |
18 19
|
eqtri |
|- ( { a | E. p e. ( _Left ` A ) E. q e. ( _Left ` 0s ) a = ( ( ( p x.s 0s ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` A ) E. s e. ( _Right ` 0s ) b = ( ( ( r x.s 0s ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) = (/) |
21 |
|
rex0 |
|- -. E. u e. (/) c = ( ( ( t x.s 0s ) +s ( A x.s u ) ) -s ( t x.s u ) ) |
22 |
12
|
rexeqi |
|- ( E. u e. ( _Right ` 0s ) c = ( ( ( t x.s 0s ) +s ( A x.s u ) ) -s ( t x.s u ) ) <-> E. u e. (/) c = ( ( ( t x.s 0s ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) |
23 |
21 22
|
mtbir |
|- -. E. u e. ( _Right ` 0s ) c = ( ( ( t x.s 0s ) +s ( A x.s u ) ) -s ( t x.s u ) ) |
24 |
23
|
a1i |
|- ( t e. ( _Left ` A ) -> -. E. u e. ( _Right ` 0s ) c = ( ( ( t x.s 0s ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) |
25 |
24
|
nrex |
|- -. E. t e. ( _Left ` A ) E. u e. ( _Right ` 0s ) c = ( ( ( t x.s 0s ) +s ( A x.s u ) ) -s ( t x.s u ) ) |
26 |
25
|
abf |
|- { c | E. t e. ( _Left ` A ) E. u e. ( _Right ` 0s ) c = ( ( ( t x.s 0s ) +s ( A x.s u ) ) -s ( t x.s u ) ) } = (/) |
27 |
|
rex0 |
|- -. E. w e. (/) d = ( ( ( v x.s 0s ) +s ( A x.s w ) ) -s ( v x.s w ) ) |
28 |
5
|
rexeqi |
|- ( E. w e. ( _Left ` 0s ) d = ( ( ( v x.s 0s ) +s ( A x.s w ) ) -s ( v x.s w ) ) <-> E. w e. (/) d = ( ( ( v x.s 0s ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) |
29 |
27 28
|
mtbir |
|- -. E. w e. ( _Left ` 0s ) d = ( ( ( v x.s 0s ) +s ( A x.s w ) ) -s ( v x.s w ) ) |
30 |
29
|
a1i |
|- ( v e. ( _Right ` A ) -> -. E. w e. ( _Left ` 0s ) d = ( ( ( v x.s 0s ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) |
31 |
30
|
nrex |
|- -. E. v e. ( _Right ` A ) E. w e. ( _Left ` 0s ) d = ( ( ( v x.s 0s ) +s ( A x.s w ) ) -s ( v x.s w ) ) |
32 |
31
|
abf |
|- { d | E. v e. ( _Right ` A ) E. w e. ( _Left ` 0s ) d = ( ( ( v x.s 0s ) +s ( A x.s w ) ) -s ( v x.s w ) ) } = (/) |
33 |
26 32
|
uneq12i |
|- ( { c | E. t e. ( _Left ` A ) E. u e. ( _Right ` 0s ) c = ( ( ( t x.s 0s ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` A ) E. w e. ( _Left ` 0s ) d = ( ( ( v x.s 0s ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) = ( (/) u. (/) ) |
34 |
33 19
|
eqtri |
|- ( { c | E. t e. ( _Left ` A ) E. u e. ( _Right ` 0s ) c = ( ( ( t x.s 0s ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` A ) E. w e. ( _Left ` 0s ) d = ( ( ( v x.s 0s ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) = (/) |
35 |
20 34
|
oveq12i |
|- ( ( { a | E. p e. ( _Left ` A ) E. q e. ( _Left ` 0s ) a = ( ( ( p x.s 0s ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` A ) E. s e. ( _Right ` 0s ) b = ( ( ( r x.s 0s ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) |s ( { c | E. t e. ( _Left ` A ) E. u e. ( _Right ` 0s ) c = ( ( ( t x.s 0s ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` A ) E. w e. ( _Left ` 0s ) d = ( ( ( v x.s 0s ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) = ( (/) |s (/) ) |
36 |
|
df-0s |
|- 0s = ( (/) |s (/) ) |
37 |
35 36
|
eqtr4i |
|- ( ( { a | E. p e. ( _Left ` A ) E. q e. ( _Left ` 0s ) a = ( ( ( p x.s 0s ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` A ) E. s e. ( _Right ` 0s ) b = ( ( ( r x.s 0s ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) |s ( { c | E. t e. ( _Left ` A ) E. u e. ( _Right ` 0s ) c = ( ( ( t x.s 0s ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` A ) E. w e. ( _Left ` 0s ) d = ( ( ( v x.s 0s ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) = 0s |
38 |
3 37
|
eqtrdi |
|- ( A e. No -> ( A x.s 0s ) = 0s ) |