Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( x = xO -> ( x x.s 1s ) = ( xO x.s 1s ) ) |
2 |
|
id |
|- ( x = xO -> x = xO ) |
3 |
1 2
|
eqeq12d |
|- ( x = xO -> ( ( x x.s 1s ) = x <-> ( xO x.s 1s ) = xO ) ) |
4 |
|
oveq1 |
|- ( x = A -> ( x x.s 1s ) = ( A x.s 1s ) ) |
5 |
|
id |
|- ( x = A -> x = A ) |
6 |
4 5
|
eqeq12d |
|- ( x = A -> ( ( x x.s 1s ) = x <-> ( A x.s 1s ) = A ) ) |
7 |
|
1sno |
|- 1s e. No |
8 |
|
mulsval |
|- ( ( x e. No /\ 1s e. No ) -> ( x x.s 1s ) = ( ( { a | E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) } ) |s ( { c | E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) } ) ) ) |
9 |
7 8
|
mpan2 |
|- ( x e. No -> ( x x.s 1s ) = ( ( { a | E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) } ) |s ( { c | E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) } ) ) ) |
10 |
9
|
adantr |
|- ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( x x.s 1s ) = ( ( { a | E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) } ) |s ( { c | E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) } ) ) ) |
11 |
|
elun1 |
|- ( p e. ( _Left ` x ) -> p e. ( ( _Left ` x ) u. ( _Right ` x ) ) ) |
12 |
|
oveq1 |
|- ( xO = p -> ( xO x.s 1s ) = ( p x.s 1s ) ) |
13 |
|
id |
|- ( xO = p -> xO = p ) |
14 |
12 13
|
eqeq12d |
|- ( xO = p -> ( ( xO x.s 1s ) = xO <-> ( p x.s 1s ) = p ) ) |
15 |
14
|
rspcva |
|- ( ( p e. ( ( _Left ` x ) u. ( _Right ` x ) ) /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( p x.s 1s ) = p ) |
16 |
11 15
|
sylan |
|- ( ( p e. ( _Left ` x ) /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( p x.s 1s ) = p ) |
17 |
16
|
ancoms |
|- ( ( A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO /\ p e. ( _Left ` x ) ) -> ( p x.s 1s ) = p ) |
18 |
17
|
adantll |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( p x.s 1s ) = p ) |
19 |
|
muls01 |
|- ( x e. No -> ( x x.s 0s ) = 0s ) |
20 |
19
|
adantr |
|- ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( x x.s 0s ) = 0s ) |
21 |
20
|
adantr |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( x x.s 0s ) = 0s ) |
22 |
18 21
|
oveq12d |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( ( p x.s 1s ) +s ( x x.s 0s ) ) = ( p +s 0s ) ) |
23 |
|
leftssno |
|- ( _Left ` x ) C_ No |
24 |
23
|
sseli |
|- ( p e. ( _Left ` x ) -> p e. No ) |
25 |
24
|
adantl |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> p e. No ) |
26 |
25
|
addsridd |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( p +s 0s ) = p ) |
27 |
22 26
|
eqtrd |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( ( p x.s 1s ) +s ( x x.s 0s ) ) = p ) |
28 |
|
muls01 |
|- ( p e. No -> ( p x.s 0s ) = 0s ) |
29 |
25 28
|
syl |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( p x.s 0s ) = 0s ) |
30 |
27 29
|
oveq12d |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) = ( p -s 0s ) ) |
31 |
|
subsid1 |
|- ( p e. No -> ( p -s 0s ) = p ) |
32 |
25 31
|
syl |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( p -s 0s ) = p ) |
33 |
30 32
|
eqtrd |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) = p ) |
34 |
33
|
eqeq2d |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( a = ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) <-> a = p ) ) |
35 |
|
equcom |
|- ( a = p <-> p = a ) |
36 |
34 35
|
bitrdi |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ p e. ( _Left ` x ) ) -> ( a = ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) <-> p = a ) ) |
37 |
36
|
rexbidva |
|- ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( E. p e. ( _Left ` x ) a = ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) <-> E. p e. ( _Left ` x ) p = a ) ) |
38 |
|
left1s |
|- ( _Left ` 1s ) = { 0s } |
39 |
38
|
rexeqi |
|- ( E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) <-> E. q e. { 0s } a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) ) |
40 |
|
0sno |
|- 0s e. No |
41 |
40
|
elexi |
|- 0s e. _V |
42 |
|
oveq2 |
|- ( q = 0s -> ( x x.s q ) = ( x x.s 0s ) ) |
43 |
42
|
oveq2d |
|- ( q = 0s -> ( ( p x.s 1s ) +s ( x x.s q ) ) = ( ( p x.s 1s ) +s ( x x.s 0s ) ) ) |
44 |
|
oveq2 |
|- ( q = 0s -> ( p x.s q ) = ( p x.s 0s ) ) |
45 |
43 44
|
oveq12d |
|- ( q = 0s -> ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) = ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) ) |
46 |
45
|
eqeq2d |
|- ( q = 0s -> ( a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) <-> a = ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) ) ) |
47 |
41 46
|
rexsn |
|- ( E. q e. { 0s } a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) <-> a = ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) ) |
48 |
39 47
|
bitri |
|- ( E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) <-> a = ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) ) |
49 |
48
|
rexbii |
|- ( E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) <-> E. p e. ( _Left ` x ) a = ( ( ( p x.s 1s ) +s ( x x.s 0s ) ) -s ( p x.s 0s ) ) ) |
50 |
|
risset |
|- ( a e. ( _Left ` x ) <-> E. p e. ( _Left ` x ) p = a ) |
51 |
37 49 50
|
3bitr4g |
|- ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) <-> a e. ( _Left ` x ) ) ) |
52 |
51
|
eqabcdv |
|- ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> { a | E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) } = ( _Left ` x ) ) |
53 |
|
rex0 |
|- -. E. s e. (/) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) |
54 |
|
right1s |
|- ( _Right ` 1s ) = (/) |
55 |
54
|
rexeqi |
|- ( E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) <-> E. s e. (/) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) ) |
56 |
53 55
|
mtbir |
|- -. E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) |
57 |
56
|
a1i |
|- ( r e. ( _Right ` x ) -> -. E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) ) |
58 |
57
|
nrex |
|- -. E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) |
59 |
58
|
abf |
|- { b | E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) } = (/) |
60 |
59
|
a1i |
|- ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> { b | E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) } = (/) ) |
61 |
52 60
|
uneq12d |
|- ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( { a | E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) } ) = ( ( _Left ` x ) u. (/) ) ) |
62 |
|
un0 |
|- ( ( _Left ` x ) u. (/) ) = ( _Left ` x ) |
63 |
61 62
|
eqtrdi |
|- ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( { a | E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) } ) = ( _Left ` x ) ) |
64 |
|
rex0 |
|- -. E. u e. (/) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) |
65 |
54
|
rexeqi |
|- ( E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) <-> E. u e. (/) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) ) |
66 |
64 65
|
mtbir |
|- -. E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) |
67 |
66
|
a1i |
|- ( t e. ( _Left ` x ) -> -. E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) ) |
68 |
67
|
nrex |
|- -. E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) |
69 |
68
|
abf |
|- { c | E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) } = (/) |
70 |
69
|
a1i |
|- ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> { c | E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) } = (/) ) |
71 |
|
elun2 |
|- ( v e. ( _Right ` x ) -> v e. ( ( _Left ` x ) u. ( _Right ` x ) ) ) |
72 |
|
oveq1 |
|- ( xO = v -> ( xO x.s 1s ) = ( v x.s 1s ) ) |
73 |
|
id |
|- ( xO = v -> xO = v ) |
74 |
72 73
|
eqeq12d |
|- ( xO = v -> ( ( xO x.s 1s ) = xO <-> ( v x.s 1s ) = v ) ) |
75 |
74
|
rspcva |
|- ( ( v e. ( ( _Left ` x ) u. ( _Right ` x ) ) /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( v x.s 1s ) = v ) |
76 |
71 75
|
sylan |
|- ( ( v e. ( _Right ` x ) /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( v x.s 1s ) = v ) |
77 |
76
|
ancoms |
|- ( ( A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO /\ v e. ( _Right ` x ) ) -> ( v x.s 1s ) = v ) |
78 |
77
|
adantll |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( v x.s 1s ) = v ) |
79 |
20
|
adantr |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( x x.s 0s ) = 0s ) |
80 |
78 79
|
oveq12d |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( ( v x.s 1s ) +s ( x x.s 0s ) ) = ( v +s 0s ) ) |
81 |
|
rightssno |
|- ( _Right ` x ) C_ No |
82 |
81
|
sseli |
|- ( v e. ( _Right ` x ) -> v e. No ) |
83 |
82
|
adantl |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> v e. No ) |
84 |
83
|
addsridd |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( v +s 0s ) = v ) |
85 |
80 84
|
eqtrd |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( ( v x.s 1s ) +s ( x x.s 0s ) ) = v ) |
86 |
|
muls01 |
|- ( v e. No -> ( v x.s 0s ) = 0s ) |
87 |
83 86
|
syl |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( v x.s 0s ) = 0s ) |
88 |
85 87
|
oveq12d |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( ( ( v x.s 1s ) +s ( x x.s 0s ) ) -s ( v x.s 0s ) ) = ( v -s 0s ) ) |
89 |
|
subsid1 |
|- ( v e. No -> ( v -s 0s ) = v ) |
90 |
83 89
|
syl |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( v -s 0s ) = v ) |
91 |
88 90
|
eqtrd |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( ( ( v x.s 1s ) +s ( x x.s 0s ) ) -s ( v x.s 0s ) ) = v ) |
92 |
91
|
eqeq2d |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( d = ( ( ( v x.s 1s ) +s ( x x.s 0s ) ) -s ( v x.s 0s ) ) <-> d = v ) ) |
93 |
38
|
rexeqi |
|- ( E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) <-> E. w e. { 0s } d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) ) |
94 |
|
oveq2 |
|- ( w = 0s -> ( x x.s w ) = ( x x.s 0s ) ) |
95 |
94
|
oveq2d |
|- ( w = 0s -> ( ( v x.s 1s ) +s ( x x.s w ) ) = ( ( v x.s 1s ) +s ( x x.s 0s ) ) ) |
96 |
|
oveq2 |
|- ( w = 0s -> ( v x.s w ) = ( v x.s 0s ) ) |
97 |
95 96
|
oveq12d |
|- ( w = 0s -> ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) = ( ( ( v x.s 1s ) +s ( x x.s 0s ) ) -s ( v x.s 0s ) ) ) |
98 |
97
|
eqeq2d |
|- ( w = 0s -> ( d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) <-> d = ( ( ( v x.s 1s ) +s ( x x.s 0s ) ) -s ( v x.s 0s ) ) ) ) |
99 |
41 98
|
rexsn |
|- ( E. w e. { 0s } d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) <-> d = ( ( ( v x.s 1s ) +s ( x x.s 0s ) ) -s ( v x.s 0s ) ) ) |
100 |
93 99
|
bitri |
|- ( E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) <-> d = ( ( ( v x.s 1s ) +s ( x x.s 0s ) ) -s ( v x.s 0s ) ) ) |
101 |
|
equcom |
|- ( v = d <-> d = v ) |
102 |
92 100 101
|
3bitr4g |
|- ( ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) /\ v e. ( _Right ` x ) ) -> ( E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) <-> v = d ) ) |
103 |
102
|
rexbidva |
|- ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) <-> E. v e. ( _Right ` x ) v = d ) ) |
104 |
|
risset |
|- ( d e. ( _Right ` x ) <-> E. v e. ( _Right ` x ) v = d ) |
105 |
103 104
|
bitr4di |
|- ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) <-> d e. ( _Right ` x ) ) ) |
106 |
105
|
eqabcdv |
|- ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> { d | E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) } = ( _Right ` x ) ) |
107 |
70 106
|
uneq12d |
|- ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( { c | E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) } ) = ( (/) u. ( _Right ` x ) ) ) |
108 |
|
0un |
|- ( (/) u. ( _Right ` x ) ) = ( _Right ` x ) |
109 |
107 108
|
eqtrdi |
|- ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( { c | E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) } ) = ( _Right ` x ) ) |
110 |
63 109
|
oveq12d |
|- ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( ( { a | E. p e. ( _Left ` x ) E. q e. ( _Left ` 1s ) a = ( ( ( p x.s 1s ) +s ( x x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` x ) E. s e. ( _Right ` 1s ) b = ( ( ( r x.s 1s ) +s ( x x.s s ) ) -s ( r x.s s ) ) } ) |s ( { c | E. t e. ( _Left ` x ) E. u e. ( _Right ` 1s ) c = ( ( ( t x.s 1s ) +s ( x x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. ( _Right ` x ) E. w e. ( _Left ` 1s ) d = ( ( ( v x.s 1s ) +s ( x x.s w ) ) -s ( v x.s w ) ) } ) ) = ( ( _Left ` x ) |s ( _Right ` x ) ) ) |
111 |
|
lrcut |
|- ( x e. No -> ( ( _Left ` x ) |s ( _Right ` x ) ) = x ) |
112 |
111
|
adantr |
|- ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( ( _Left ` x ) |s ( _Right ` x ) ) = x ) |
113 |
10 110 112
|
3eqtrd |
|- ( ( x e. No /\ A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO ) -> ( x x.s 1s ) = x ) |
114 |
113
|
ex |
|- ( x e. No -> ( A. xO e. ( ( _Left ` x ) u. ( _Right ` x ) ) ( xO x.s 1s ) = xO -> ( x x.s 1s ) = x ) ) |
115 |
3 6 114
|
noinds |
|- ( A e. No -> ( A x.s 1s ) = A ) |