Metamath Proof Explorer


Theorem right1s

Description: The right set of 1s is empty . (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion right1s
|- ( _Right ` 1s ) = (/)

Proof

Step Hyp Ref Expression
1 rightval
 |-  ( _Right ` 1s ) = { x e. ( _Old ` ( bday ` 1s ) ) | 1s 
2 bday1s
 |-  ( bday ` 1s ) = 1o
3 2 fveq2i
 |-  ( _Old ` ( bday ` 1s ) ) = ( _Old ` 1o )
4 old1
 |-  ( _Old ` 1o ) = { 0s }
5 3 4 eqtri
 |-  ( _Old ` ( bday ` 1s ) ) = { 0s }
6 5 rabeqi
 |-  { x e. ( _Old ` ( bday ` 1s ) ) | 1s 
7 breq2
 |-  ( x = 0s -> ( 1s  1s 
8 7 rabsnif
 |-  { x e. { 0s } | 1s 
9 6 8 eqtri
 |-  { x e. ( _Old ` ( bday ` 1s ) ) | 1s 
10 0slt1s
 |-  0s 
11 0sno
 |-  0s e. No
12 1sno
 |-  1s e. No
13 sltasym
 |-  ( ( 0s e. No /\ 1s e. No ) -> ( 0s  -. 1s 
14 11 12 13 mp2an
 |-  ( 0s  -. 1s 
15 10 14 ax-mp
 |-  -. 1s 
16 15 iffalsei
 |-  if ( 1s 
17 1 9 16 3eqtri
 |-  ( _Right ` 1s ) = (/)