| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1on |
|- 1o e. On |
| 2 |
|
oldval |
|- ( 1o e. On -> ( _Old ` 1o ) = U. ( _Made " 1o ) ) |
| 3 |
1 2
|
ax-mp |
|- ( _Old ` 1o ) = U. ( _Made " 1o ) |
| 4 |
|
df1o2 |
|- 1o = { (/) } |
| 5 |
4
|
imaeq2i |
|- ( _Made " 1o ) = ( _Made " { (/) } ) |
| 6 |
|
madef |
|- _Made : On --> ~P No |
| 7 |
|
ffn |
|- ( _Made : On --> ~P No -> _Made Fn On ) |
| 8 |
6 7
|
ax-mp |
|- _Made Fn On |
| 9 |
|
0elon |
|- (/) e. On |
| 10 |
|
fnsnfv |
|- ( ( _Made Fn On /\ (/) e. On ) -> { ( _Made ` (/) ) } = ( _Made " { (/) } ) ) |
| 11 |
8 9 10
|
mp2an |
|- { ( _Made ` (/) ) } = ( _Made " { (/) } ) |
| 12 |
5 11
|
eqtr4i |
|- ( _Made " 1o ) = { ( _Made ` (/) ) } |
| 13 |
12
|
unieqi |
|- U. ( _Made " 1o ) = U. { ( _Made ` (/) ) } |
| 14 |
|
fvex |
|- ( _Made ` (/) ) e. _V |
| 15 |
14
|
unisn |
|- U. { ( _Made ` (/) ) } = ( _Made ` (/) ) |
| 16 |
|
made0 |
|- ( _Made ` (/) ) = { 0s } |
| 17 |
15 16
|
eqtri |
|- U. { ( _Made ` (/) ) } = { 0s } |
| 18 |
13 17
|
eqtri |
|- U. ( _Made " 1o ) = { 0s } |
| 19 |
3 18
|
eqtri |
|- ( _Old ` 1o ) = { 0s } |