Metamath Proof Explorer


Theorem old1

Description: The only surreal older than 1o is 0s . (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion old1 ( O ‘ 1o ) = { 0s }

Proof

Step Hyp Ref Expression
1 1on 1o ∈ On
2 oldval ( 1o ∈ On → ( O ‘ 1o ) = ( M “ 1o ) )
3 1 2 ax-mp ( O ‘ 1o ) = ( M “ 1o )
4 df1o2 1o = { ∅ }
5 4 imaeq2i ( M “ 1o ) = ( M “ { ∅ } )
6 madef M : On ⟶ 𝒫 No
7 ffn ( M : On ⟶ 𝒫 No → M Fn On )
8 6 7 ax-mp M Fn On
9 0elon ∅ ∈ On
10 fnsnfv ( ( M Fn On ∧ ∅ ∈ On ) → { ( M ‘ ∅ ) } = ( M “ { ∅ } ) )
11 8 9 10 mp2an { ( M ‘ ∅ ) } = ( M “ { ∅ } )
12 5 11 eqtr4i ( M “ 1o ) = { ( M ‘ ∅ ) }
13 12 unieqi ( M “ 1o ) = { ( M ‘ ∅ ) }
14 fvex ( M ‘ ∅ ) ∈ V
15 14 unisn { ( M ‘ ∅ ) } = ( M ‘ ∅ )
16 made0 ( M ‘ ∅ ) = { 0s }
17 15 16 eqtri { ( M ‘ ∅ ) } = { 0s }
18 13 17 eqtri ( M “ 1o ) = { 0s }
19 3 18 eqtri ( O ‘ 1o ) = { 0s }