Step |
Hyp |
Ref |
Expression |
1 |
|
1on |
⊢ 1o ∈ On |
2 |
|
oldval |
⊢ ( 1o ∈ On → ( O ‘ 1o ) = ∪ ( M “ 1o ) ) |
3 |
1 2
|
ax-mp |
⊢ ( O ‘ 1o ) = ∪ ( M “ 1o ) |
4 |
|
df1o2 |
⊢ 1o = { ∅ } |
5 |
4
|
imaeq2i |
⊢ ( M “ 1o ) = ( M “ { ∅ } ) |
6 |
|
madef |
⊢ M : On ⟶ 𝒫 No |
7 |
|
ffn |
⊢ ( M : On ⟶ 𝒫 No → M Fn On ) |
8 |
6 7
|
ax-mp |
⊢ M Fn On |
9 |
|
0elon |
⊢ ∅ ∈ On |
10 |
|
fnsnfv |
⊢ ( ( M Fn On ∧ ∅ ∈ On ) → { ( M ‘ ∅ ) } = ( M “ { ∅ } ) ) |
11 |
8 9 10
|
mp2an |
⊢ { ( M ‘ ∅ ) } = ( M “ { ∅ } ) |
12 |
5 11
|
eqtr4i |
⊢ ( M “ 1o ) = { ( M ‘ ∅ ) } |
13 |
12
|
unieqi |
⊢ ∪ ( M “ 1o ) = ∪ { ( M ‘ ∅ ) } |
14 |
|
fvex |
⊢ ( M ‘ ∅ ) ∈ V |
15 |
14
|
unisn |
⊢ ∪ { ( M ‘ ∅ ) } = ( M ‘ ∅ ) |
16 |
|
made0 |
⊢ ( M ‘ ∅ ) = { 0s } |
17 |
15 16
|
eqtri |
⊢ ∪ { ( M ‘ ∅ ) } = { 0s } |
18 |
13 17
|
eqtri |
⊢ ∪ ( M “ 1o ) = { 0s } |
19 |
3 18
|
eqtri |
⊢ ( O ‘ 1o ) = { 0s } |