Metamath Proof Explorer


Theorem sltaddsubd

Description: Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 28-Feb-2025)

Ref Expression
Hypotheses sltsubadd.1
|- ( ph -> A e. No )
sltsubadd.2
|- ( ph -> B e. No )
sltsubadd.3
|- ( ph -> C e. No )
Assertion sltaddsubd
|- ( ph -> ( ( A +s B )  A 

Proof

Step Hyp Ref Expression
1 sltsubadd.1
 |-  ( ph -> A e. No )
2 sltsubadd.2
 |-  ( ph -> B e. No )
3 sltsubadd.3
 |-  ( ph -> C e. No )
4 1 2 addscld
 |-  ( ph -> ( A +s B ) e. No )
5 4 3 2 sltsub1d
 |-  ( ph -> ( ( A +s B )  ( ( A +s B ) -s B ) 
6 pncans
 |-  ( ( A e. No /\ B e. No ) -> ( ( A +s B ) -s B ) = A )
7 1 2 6 syl2anc
 |-  ( ph -> ( ( A +s B ) -s B ) = A )
8 7 breq1d
 |-  ( ph -> ( ( ( A +s B ) -s B )  A 
9 5 8 bitrd
 |-  ( ph -> ( ( A +s B )  A