Description: Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 28-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sltsubadd.1 | |- ( ph -> A e. No ) |
|
| sltsubadd.2 | |- ( ph -> B e. No ) |
||
| sltsubadd.3 | |- ( ph -> C e. No ) |
||
| Assertion | sltaddsubd | |- ( ph -> ( ( A +s B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltsubadd.1 | |- ( ph -> A e. No ) |
|
| 2 | sltsubadd.2 | |- ( ph -> B e. No ) |
|
| 3 | sltsubadd.3 | |- ( ph -> C e. No ) |
|
| 4 | 1 2 | addscld | |- ( ph -> ( A +s B ) e. No ) |
| 5 | 4 3 2 | sltsub1d | |- ( ph -> ( ( A +s B ) |
| 6 | pncans | |- ( ( A e. No /\ B e. No ) -> ( ( A +s B ) -s B ) = A ) |
|
| 7 | 1 2 6 | syl2anc | |- ( ph -> ( ( A +s B ) -s B ) = A ) |
| 8 | 7 | breq1d | |- ( ph -> ( ( ( A +s B ) -s B ) |
| 9 | 5 8 | bitrd | |- ( ph -> ( ( A +s B ) |