Description: Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 28-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sltsubadd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
sltsubadd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
sltsubadd.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | ||
Assertion | sltaddsubd | ⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) <s 𝐶 ↔ 𝐴 <s ( 𝐶 -s 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltsubadd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
2 | sltsubadd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
3 | sltsubadd.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | |
4 | 1 2 | addscld | ⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No ) |
5 | 4 3 2 | sltsub1d | ⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) <s 𝐶 ↔ ( ( 𝐴 +s 𝐵 ) -s 𝐵 ) <s ( 𝐶 -s 𝐵 ) ) ) |
6 | pncans | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 +s 𝐵 ) -s 𝐵 ) = 𝐴 ) | |
7 | 1 2 6 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) -s 𝐵 ) = 𝐴 ) |
8 | 7 | breq1d | ⊢ ( 𝜑 → ( ( ( 𝐴 +s 𝐵 ) -s 𝐵 ) <s ( 𝐶 -s 𝐵 ) ↔ 𝐴 <s ( 𝐶 -s 𝐵 ) ) ) |
9 | 5 8 | bitrd | ⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) <s 𝐶 ↔ 𝐴 <s ( 𝐶 -s 𝐵 ) ) ) |