| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn1m1nns |
⊢ ( 𝑁 ∈ ℕs → ( 𝑁 = 1s ∨ ( 𝑁 -s 1s ) ∈ ℕs ) ) |
| 2 |
|
nnsno |
⊢ ( 𝑁 ∈ ℕs → 𝑁 ∈ No ) |
| 3 |
|
1sno |
⊢ 1s ∈ No |
| 4 |
3
|
a1i |
⊢ ( 𝑁 ∈ ℕs → 1s ∈ No ) |
| 5 |
2 4
|
subseq0d |
⊢ ( 𝑁 ∈ ℕs → ( ( 𝑁 -s 1s ) = 0s ↔ 𝑁 = 1s ) ) |
| 6 |
5
|
orbi1d |
⊢ ( 𝑁 ∈ ℕs → ( ( ( 𝑁 -s 1s ) = 0s ∨ ( 𝑁 -s 1s ) ∈ ℕs ) ↔ ( 𝑁 = 1s ∨ ( 𝑁 -s 1s ) ∈ ℕs ) ) ) |
| 7 |
1 6
|
mpbird |
⊢ ( 𝑁 ∈ ℕs → ( ( 𝑁 -s 1s ) = 0s ∨ ( 𝑁 -s 1s ) ∈ ℕs ) ) |
| 8 |
7
|
orcomd |
⊢ ( 𝑁 ∈ ℕs → ( ( 𝑁 -s 1s ) ∈ ℕs ∨ ( 𝑁 -s 1s ) = 0s ) ) |
| 9 |
|
eln0s |
⊢ ( ( 𝑁 -s 1s ) ∈ ℕ0s ↔ ( ( 𝑁 -s 1s ) ∈ ℕs ∨ ( 𝑁 -s 1s ) = 0s ) ) |
| 10 |
8 9
|
sylibr |
⊢ ( 𝑁 ∈ ℕs → ( 𝑁 -s 1s ) ∈ ℕ0s ) |