Metamath Proof Explorer


Theorem nnm1n0s

Description: A positive surreal integer minus one is a non-negative surreal integer. (Contributed by Scott Fenton, 8-Nov-2025)

Ref Expression
Assertion nnm1n0s ( 𝑁 ∈ ℕs → ( 𝑁 -s 1s ) ∈ ℕ0s )

Proof

Step Hyp Ref Expression
1 nn1m1nns ( 𝑁 ∈ ℕs → ( 𝑁 = 1s ∨ ( 𝑁 -s 1s ) ∈ ℕs ) )
2 nnsno ( 𝑁 ∈ ℕs𝑁 No )
3 1sno 1s No
4 3 a1i ( 𝑁 ∈ ℕs → 1s No )
5 2 4 subseq0d ( 𝑁 ∈ ℕs → ( ( 𝑁 -s 1s ) = 0s𝑁 = 1s ) )
6 5 orbi1d ( 𝑁 ∈ ℕs → ( ( ( 𝑁 -s 1s ) = 0s ∨ ( 𝑁 -s 1s ) ∈ ℕs ) ↔ ( 𝑁 = 1s ∨ ( 𝑁 -s 1s ) ∈ ℕs ) ) )
7 1 6 mpbird ( 𝑁 ∈ ℕs → ( ( 𝑁 -s 1s ) = 0s ∨ ( 𝑁 -s 1s ) ∈ ℕs ) )
8 7 orcomd ( 𝑁 ∈ ℕs → ( ( 𝑁 -s 1s ) ∈ ℕs ∨ ( 𝑁 -s 1s ) = 0s ) )
9 eln0s ( ( 𝑁 -s 1s ) ∈ ℕ0s ↔ ( ( 𝑁 -s 1s ) ∈ ℕs ∨ ( 𝑁 -s 1s ) = 0s ) )
10 8 9 sylibr ( 𝑁 ∈ ℕs → ( 𝑁 -s 1s ) ∈ ℕ0s )