Metamath Proof Explorer


Theorem nnm1n0s

Description: A positive surreal integer minus one is a non-negative surreal integer. (Contributed by Scott Fenton, 8-Nov-2025)

Ref Expression
Assertion nnm1n0s N s N - s 1 s 0s

Proof

Step Hyp Ref Expression
1 nn1m1nns N s N = 1 s N - s 1 s s
2 nnsno N s N No
3 1sno 1 s No
4 3 a1i N s 1 s No
5 2 4 subseq0d N s N - s 1 s = 0 s N = 1 s
6 5 orbi1d N s N - s 1 s = 0 s N - s 1 s s N = 1 s N - s 1 s s
7 1 6 mpbird N s N - s 1 s = 0 s N - s 1 s s
8 7 orcomd N s N - s 1 s s N - s 1 s = 0 s
9 eln0s N - s 1 s 0s N - s 1 s s N - s 1 s = 0 s
10 8 9 sylibr N s N - s 1 s 0s