Metamath Proof Explorer


Theorem nn1m1nns

Description: Every positive surreal integer is either one or a successor. (Contributed by Scott Fenton, 8-Nov-2025)

Ref Expression
Assertion nn1m1nns ( 𝐴 ∈ ℕs → ( 𝐴 = 1s ∨ ( 𝐴 -s 1s ) ∈ ℕs ) )

Proof

Step Hyp Ref Expression
1 eqeq1 ( 𝑥 = 1s → ( 𝑥 = 1s ↔ 1s = 1s ) )
2 oveq1 ( 𝑥 = 1s → ( 𝑥 -s 1s ) = ( 1s -s 1s ) )
3 2 eleq1d ( 𝑥 = 1s → ( ( 𝑥 -s 1s ) ∈ ℕs ↔ ( 1s -s 1s ) ∈ ℕs ) )
4 1 3 orbi12d ( 𝑥 = 1s → ( ( 𝑥 = 1s ∨ ( 𝑥 -s 1s ) ∈ ℕs ) ↔ ( 1s = 1s ∨ ( 1s -s 1s ) ∈ ℕs ) ) )
5 eqeq1 ( 𝑥 = 𝑦 → ( 𝑥 = 1s𝑦 = 1s ) )
6 oveq1 ( 𝑥 = 𝑦 → ( 𝑥 -s 1s ) = ( 𝑦 -s 1s ) )
7 6 eleq1d ( 𝑥 = 𝑦 → ( ( 𝑥 -s 1s ) ∈ ℕs ↔ ( 𝑦 -s 1s ) ∈ ℕs ) )
8 5 7 orbi12d ( 𝑥 = 𝑦 → ( ( 𝑥 = 1s ∨ ( 𝑥 -s 1s ) ∈ ℕs ) ↔ ( 𝑦 = 1s ∨ ( 𝑦 -s 1s ) ∈ ℕs ) ) )
9 eqeq1 ( 𝑥 = ( 𝑦 +s 1s ) → ( 𝑥 = 1s ↔ ( 𝑦 +s 1s ) = 1s ) )
10 oveq1 ( 𝑥 = ( 𝑦 +s 1s ) → ( 𝑥 -s 1s ) = ( ( 𝑦 +s 1s ) -s 1s ) )
11 10 eleq1d ( 𝑥 = ( 𝑦 +s 1s ) → ( ( 𝑥 -s 1s ) ∈ ℕs ↔ ( ( 𝑦 +s 1s ) -s 1s ) ∈ ℕs ) )
12 9 11 orbi12d ( 𝑥 = ( 𝑦 +s 1s ) → ( ( 𝑥 = 1s ∨ ( 𝑥 -s 1s ) ∈ ℕs ) ↔ ( ( 𝑦 +s 1s ) = 1s ∨ ( ( 𝑦 +s 1s ) -s 1s ) ∈ ℕs ) ) )
13 eqeq1 ( 𝑥 = 𝐴 → ( 𝑥 = 1s𝐴 = 1s ) )
14 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 -s 1s ) = ( 𝐴 -s 1s ) )
15 14 eleq1d ( 𝑥 = 𝐴 → ( ( 𝑥 -s 1s ) ∈ ℕs ↔ ( 𝐴 -s 1s ) ∈ ℕs ) )
16 13 15 orbi12d ( 𝑥 = 𝐴 → ( ( 𝑥 = 1s ∨ ( 𝑥 -s 1s ) ∈ ℕs ) ↔ ( 𝐴 = 1s ∨ ( 𝐴 -s 1s ) ∈ ℕs ) ) )
17 eqid 1s = 1s
18 17 orci ( 1s = 1s ∨ ( 1s -s 1s ) ∈ ℕs )
19 nnsno ( 𝑦 ∈ ℕs𝑦 No )
20 1sno 1s No
21 pncans ( ( 𝑦 No ∧ 1s No ) → ( ( 𝑦 +s 1s ) -s 1s ) = 𝑦 )
22 19 20 21 sylancl ( 𝑦 ∈ ℕs → ( ( 𝑦 +s 1s ) -s 1s ) = 𝑦 )
23 id ( 𝑦 ∈ ℕs𝑦 ∈ ℕs )
24 22 23 eqeltrd ( 𝑦 ∈ ℕs → ( ( 𝑦 +s 1s ) -s 1s ) ∈ ℕs )
25 24 olcd ( 𝑦 ∈ ℕs → ( ( 𝑦 +s 1s ) = 1s ∨ ( ( 𝑦 +s 1s ) -s 1s ) ∈ ℕs ) )
26 25 a1d ( 𝑦 ∈ ℕs → ( ( 𝑦 = 1s ∨ ( 𝑦 -s 1s ) ∈ ℕs ) → ( ( 𝑦 +s 1s ) = 1s ∨ ( ( 𝑦 +s 1s ) -s 1s ) ∈ ℕs ) ) )
27 4 8 12 16 18 26 nnsind ( 𝐴 ∈ ℕs → ( 𝐴 = 1s ∨ ( 𝐴 -s 1s ) ∈ ℕs ) )