| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
⊢ ( 𝑥 = 1s → ( 𝑥 = 1s ↔ 1s = 1s ) ) |
| 2 |
|
oveq1 |
⊢ ( 𝑥 = 1s → ( 𝑥 -s 1s ) = ( 1s -s 1s ) ) |
| 3 |
2
|
eleq1d |
⊢ ( 𝑥 = 1s → ( ( 𝑥 -s 1s ) ∈ ℕs ↔ ( 1s -s 1s ) ∈ ℕs ) ) |
| 4 |
1 3
|
orbi12d |
⊢ ( 𝑥 = 1s → ( ( 𝑥 = 1s ∨ ( 𝑥 -s 1s ) ∈ ℕs ) ↔ ( 1s = 1s ∨ ( 1s -s 1s ) ∈ ℕs ) ) ) |
| 5 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 1s ↔ 𝑦 = 1s ) ) |
| 6 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 -s 1s ) = ( 𝑦 -s 1s ) ) |
| 7 |
6
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 -s 1s ) ∈ ℕs ↔ ( 𝑦 -s 1s ) ∈ ℕs ) ) |
| 8 |
5 7
|
orbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 = 1s ∨ ( 𝑥 -s 1s ) ∈ ℕs ) ↔ ( 𝑦 = 1s ∨ ( 𝑦 -s 1s ) ∈ ℕs ) ) ) |
| 9 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( 𝑥 = 1s ↔ ( 𝑦 +s 1s ) = 1s ) ) |
| 10 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( 𝑥 -s 1s ) = ( ( 𝑦 +s 1s ) -s 1s ) ) |
| 11 |
10
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( ( 𝑥 -s 1s ) ∈ ℕs ↔ ( ( 𝑦 +s 1s ) -s 1s ) ∈ ℕs ) ) |
| 12 |
9 11
|
orbi12d |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( ( 𝑥 = 1s ∨ ( 𝑥 -s 1s ) ∈ ℕs ) ↔ ( ( 𝑦 +s 1s ) = 1s ∨ ( ( 𝑦 +s 1s ) -s 1s ) ∈ ℕs ) ) ) |
| 13 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 1s ↔ 𝐴 = 1s ) ) |
| 14 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 -s 1s ) = ( 𝐴 -s 1s ) ) |
| 15 |
14
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 -s 1s ) ∈ ℕs ↔ ( 𝐴 -s 1s ) ∈ ℕs ) ) |
| 16 |
13 15
|
orbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 1s ∨ ( 𝑥 -s 1s ) ∈ ℕs ) ↔ ( 𝐴 = 1s ∨ ( 𝐴 -s 1s ) ∈ ℕs ) ) ) |
| 17 |
|
eqid |
⊢ 1s = 1s |
| 18 |
17
|
orci |
⊢ ( 1s = 1s ∨ ( 1s -s 1s ) ∈ ℕs ) |
| 19 |
|
nnsno |
⊢ ( 𝑦 ∈ ℕs → 𝑦 ∈ No ) |
| 20 |
|
1sno |
⊢ 1s ∈ No |
| 21 |
|
pncans |
⊢ ( ( 𝑦 ∈ No ∧ 1s ∈ No ) → ( ( 𝑦 +s 1s ) -s 1s ) = 𝑦 ) |
| 22 |
19 20 21
|
sylancl |
⊢ ( 𝑦 ∈ ℕs → ( ( 𝑦 +s 1s ) -s 1s ) = 𝑦 ) |
| 23 |
|
id |
⊢ ( 𝑦 ∈ ℕs → 𝑦 ∈ ℕs ) |
| 24 |
22 23
|
eqeltrd |
⊢ ( 𝑦 ∈ ℕs → ( ( 𝑦 +s 1s ) -s 1s ) ∈ ℕs ) |
| 25 |
24
|
olcd |
⊢ ( 𝑦 ∈ ℕs → ( ( 𝑦 +s 1s ) = 1s ∨ ( ( 𝑦 +s 1s ) -s 1s ) ∈ ℕs ) ) |
| 26 |
25
|
a1d |
⊢ ( 𝑦 ∈ ℕs → ( ( 𝑦 = 1s ∨ ( 𝑦 -s 1s ) ∈ ℕs ) → ( ( 𝑦 +s 1s ) = 1s ∨ ( ( 𝑦 +s 1s ) -s 1s ) ∈ ℕs ) ) ) |
| 27 |
4 8 12 16 18 26
|
nnsind |
⊢ ( 𝐴 ∈ ℕs → ( 𝐴 = 1s ∨ ( 𝐴 -s 1s ) ∈ ℕs ) ) |