Step |
Hyp |
Ref |
Expression |
1 |
|
nnsind.1 |
|- ( x = 1s -> ( ph <-> ps ) ) |
2 |
|
nnsind.2 |
|- ( x = y -> ( ph <-> ch ) ) |
3 |
|
nnsind.3 |
|- ( x = ( y +s 1s ) -> ( ph <-> th ) ) |
4 |
|
nnsind.4 |
|- ( x = A -> ( ph <-> ta ) ) |
5 |
|
nnsind.5 |
|- ps |
6 |
|
nnsind.6 |
|- ( y e. NN_s -> ( ch -> th ) ) |
7 |
|
tru |
|- T. |
8 |
|
dfnns2 |
|- NN_s = ( rec ( ( n e. _V |-> ( n +s 1s ) ) , 1s ) " _om ) |
9 |
8
|
a1i |
|- ( T. -> NN_s = ( rec ( ( n e. _V |-> ( n +s 1s ) ) , 1s ) " _om ) ) |
10 |
|
1sno |
|- 1s e. No |
11 |
10
|
a1i |
|- ( T. -> 1s e. No ) |
12 |
5
|
a1i |
|- ( T. -> ps ) |
13 |
6
|
adantl |
|- ( ( T. /\ y e. NN_s ) -> ( ch -> th ) ) |
14 |
9 11 1 2 3 4 12 13
|
noseqinds |
|- ( ( T. /\ A e. NN_s ) -> ta ) |
15 |
7 14
|
mpan |
|- ( A e. NN_s -> ta ) |