| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnsind.1 |
|- ( x = 1s -> ( ph <-> ps ) ) |
| 2 |
|
nnsind.2 |
|- ( x = y -> ( ph <-> ch ) ) |
| 3 |
|
nnsind.3 |
|- ( x = ( y +s 1s ) -> ( ph <-> th ) ) |
| 4 |
|
nnsind.4 |
|- ( x = A -> ( ph <-> ta ) ) |
| 5 |
|
nnsind.5 |
|- ps |
| 6 |
|
nnsind.6 |
|- ( y e. NN_s -> ( ch -> th ) ) |
| 7 |
|
tru |
|- T. |
| 8 |
|
dfnns2 |
|- NN_s = ( rec ( ( n e. _V |-> ( n +s 1s ) ) , 1s ) " _om ) |
| 9 |
8
|
a1i |
|- ( T. -> NN_s = ( rec ( ( n e. _V |-> ( n +s 1s ) ) , 1s ) " _om ) ) |
| 10 |
|
1sno |
|- 1s e. No |
| 11 |
10
|
a1i |
|- ( T. -> 1s e. No ) |
| 12 |
5
|
a1i |
|- ( T. -> ps ) |
| 13 |
6
|
adantl |
|- ( ( T. /\ y e. NN_s ) -> ( ch -> th ) ) |
| 14 |
9 11 1 2 3 4 12 13
|
noseqinds |
|- ( ( T. /\ A e. NN_s ) -> ta ) |
| 15 |
7 14
|
mpan |
|- ( A e. NN_s -> ta ) |