Metamath Proof Explorer


Theorem nnsind

Description: Principle of Mathematical Induction (inference schema). (Contributed by Scott Fenton, 6-Aug-2025)

Ref Expression
Hypotheses nnsind.1
|- ( x = 1s -> ( ph <-> ps ) )
nnsind.2
|- ( x = y -> ( ph <-> ch ) )
nnsind.3
|- ( x = ( y +s 1s ) -> ( ph <-> th ) )
nnsind.4
|- ( x = A -> ( ph <-> ta ) )
nnsind.5
|- ps
nnsind.6
|- ( y e. NN_s -> ( ch -> th ) )
Assertion nnsind
|- ( A e. NN_s -> ta )

Proof

Step Hyp Ref Expression
1 nnsind.1
 |-  ( x = 1s -> ( ph <-> ps ) )
2 nnsind.2
 |-  ( x = y -> ( ph <-> ch ) )
3 nnsind.3
 |-  ( x = ( y +s 1s ) -> ( ph <-> th ) )
4 nnsind.4
 |-  ( x = A -> ( ph <-> ta ) )
5 nnsind.5
 |-  ps
6 nnsind.6
 |-  ( y e. NN_s -> ( ch -> th ) )
7 tru
 |-  T.
8 dfnns2
 |-  NN_s = ( rec ( ( n e. _V |-> ( n +s 1s ) ) , 1s ) " _om )
9 8 a1i
 |-  ( T. -> NN_s = ( rec ( ( n e. _V |-> ( n +s 1s ) ) , 1s ) " _om ) )
10 1sno
 |-  1s e. No
11 10 a1i
 |-  ( T. -> 1s e. No )
12 5 a1i
 |-  ( T. -> ps )
13 6 adantl
 |-  ( ( T. /\ y e. NN_s ) -> ( ch -> th ) )
14 9 11 1 2 3 4 12 13 noseqinds
 |-  ( ( T. /\ A e. NN_s ) -> ta )
15 7 14 mpan
 |-  ( A e. NN_s -> ta )