| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnsind.1 |  |-  ( x = 1s -> ( ph <-> ps ) ) | 
						
							| 2 |  | nnsind.2 |  |-  ( x = y -> ( ph <-> ch ) ) | 
						
							| 3 |  | nnsind.3 |  |-  ( x = ( y +s 1s ) -> ( ph <-> th ) ) | 
						
							| 4 |  | nnsind.4 |  |-  ( x = A -> ( ph <-> ta ) ) | 
						
							| 5 |  | nnsind.5 |  |-  ps | 
						
							| 6 |  | nnsind.6 |  |-  ( y e. NN_s -> ( ch -> th ) ) | 
						
							| 7 |  | tru |  |-  T. | 
						
							| 8 |  | dfnns2 |  |-  NN_s = ( rec ( ( n e. _V |-> ( n +s 1s ) ) , 1s ) " _om ) | 
						
							| 9 | 8 | a1i |  |-  ( T. -> NN_s = ( rec ( ( n e. _V |-> ( n +s 1s ) ) , 1s ) " _om ) ) | 
						
							| 10 |  | 1sno |  |-  1s e. No | 
						
							| 11 | 10 | a1i |  |-  ( T. -> 1s e. No ) | 
						
							| 12 | 5 | a1i |  |-  ( T. -> ps ) | 
						
							| 13 | 6 | adantl |  |-  ( ( T. /\ y e. NN_s ) -> ( ch -> th ) ) | 
						
							| 14 | 9 11 1 2 3 4 12 13 | noseqinds |  |-  ( ( T. /\ A e. NN_s ) -> ta ) | 
						
							| 15 | 7 14 | mpan |  |-  ( A e. NN_s -> ta ) |