Metamath Proof Explorer


Theorem dfnns2

Description: Alternate definition of the positive surreal integers. Compare df-nn . (Contributed by Scott Fenton, 6-Aug-2025)

Ref Expression
Assertion dfnns2 s = rec x V x + s 1 s 1 s ω

Proof

Step Hyp Ref Expression
1 elnns i s i 0s i 0 s
2 df-ne i 0 s ¬ i = 0 s
3 n0s0suc i 0s i = 0 s j 0s i = j + s 1 s
4 3 ord i 0s ¬ i = 0 s j 0s i = j + s 1 s
5 2 4 biimtrid i 0s i 0 s j 0s i = j + s 1 s
6 5 imp i 0s i 0 s j 0s i = j + s 1 s
7 oveq1 i = 0 s i + s 1 s = 0 s + s 1 s
8 1sno 1 s No
9 addslid 1 s No 0 s + s 1 s = 1 s
10 8 9 ax-mp 0 s + s 1 s = 1 s
11 7 10 eqtrdi i = 0 s i + s 1 s = 1 s
12 11 eqeq2d i = 0 s rec x V x + s 1 s 1 s ω y = i + s 1 s rec x V x + s 1 s 1 s ω y = 1 s
13 12 rexbidv i = 0 s y ω rec x V x + s 1 s 1 s ω y = i + s 1 s y ω rec x V x + s 1 s 1 s ω y = 1 s
14 oveq1 i = k i + s 1 s = k + s 1 s
15 14 eqeq2d i = k rec x V x + s 1 s 1 s ω y = i + s 1 s rec x V x + s 1 s 1 s ω y = k + s 1 s
16 15 rexbidv i = k y ω rec x V x + s 1 s 1 s ω y = i + s 1 s y ω rec x V x + s 1 s 1 s ω y = k + s 1 s
17 oveq1 i = k + s 1 s i + s 1 s = k + s 1 s + s 1 s
18 17 eqeq2d i = k + s 1 s rec x V x + s 1 s 1 s ω y = i + s 1 s rec x V x + s 1 s 1 s ω y = k + s 1 s + s 1 s
19 18 rexbidv i = k + s 1 s y ω rec x V x + s 1 s 1 s ω y = i + s 1 s y ω rec x V x + s 1 s 1 s ω y = k + s 1 s + s 1 s
20 fveqeq2 y = z rec x V x + s 1 s 1 s ω y = k + s 1 s + s 1 s rec x V x + s 1 s 1 s ω z = k + s 1 s + s 1 s
21 20 cbvrexvw y ω rec x V x + s 1 s 1 s ω y = k + s 1 s + s 1 s z ω rec x V x + s 1 s 1 s ω z = k + s 1 s + s 1 s
22 19 21 bitrdi i = k + s 1 s y ω rec x V x + s 1 s 1 s ω y = i + s 1 s z ω rec x V x + s 1 s 1 s ω z = k + s 1 s + s 1 s
23 oveq1 i = j i + s 1 s = j + s 1 s
24 23 eqeq2d i = j rec x V x + s 1 s 1 s ω y = i + s 1 s rec x V x + s 1 s 1 s ω y = j + s 1 s
25 24 rexbidv i = j y ω rec x V x + s 1 s 1 s ω y = i + s 1 s y ω rec x V x + s 1 s 1 s ω y = j + s 1 s
26 peano1 ω
27 1nns 1 s s
28 fr0g 1 s s rec x V x + s 1 s 1 s ω = 1 s
29 27 28 ax-mp rec x V x + s 1 s 1 s ω = 1 s
30 fveqeq2 y = rec x V x + s 1 s 1 s ω y = 1 s rec x V x + s 1 s 1 s ω = 1 s
31 30 rspcev ω rec x V x + s 1 s 1 s ω = 1 s y ω rec x V x + s 1 s 1 s ω y = 1 s
32 26 29 31 mp2an y ω rec x V x + s 1 s 1 s ω y = 1 s
33 fveqeq2 z = suc y rec x V x + s 1 s 1 s ω z = rec x V x + s 1 s 1 s ω y + s 1 s rec x V x + s 1 s 1 s ω suc y = rec x V x + s 1 s 1 s ω y + s 1 s
34 peano2 y ω suc y ω
35 ovex rec x V x + s 1 s 1 s ω y + s 1 s V
36 eqid rec x V x + s 1 s 1 s ω = rec x V x + s 1 s 1 s ω
37 oveq1 z = x z + s 1 s = x + s 1 s
38 oveq1 z = rec x V x + s 1 s 1 s ω y z + s 1 s = rec x V x + s 1 s 1 s ω y + s 1 s
39 36 37 38 frsucmpt2 y ω rec x V x + s 1 s 1 s ω y + s 1 s V rec x V x + s 1 s 1 s ω suc y = rec x V x + s 1 s 1 s ω y + s 1 s
40 35 39 mpan2 y ω rec x V x + s 1 s 1 s ω suc y = rec x V x + s 1 s 1 s ω y + s 1 s
41 33 34 40 rspcedvdw y ω z ω rec x V x + s 1 s 1 s ω z = rec x V x + s 1 s 1 s ω y + s 1 s
42 41 adantl k 0s y ω z ω rec x V x + s 1 s 1 s ω z = rec x V x + s 1 s 1 s ω y + s 1 s
43 oveq1 rec x V x + s 1 s 1 s ω y = k + s 1 s rec x V x + s 1 s 1 s ω y + s 1 s = k + s 1 s + s 1 s
44 43 eqeq2d rec x V x + s 1 s 1 s ω y = k + s 1 s rec x V x + s 1 s 1 s ω z = rec x V x + s 1 s 1 s ω y + s 1 s rec x V x + s 1 s 1 s ω z = k + s 1 s + s 1 s
45 44 rexbidv rec x V x + s 1 s 1 s ω y = k + s 1 s z ω rec x V x + s 1 s 1 s ω z = rec x V x + s 1 s 1 s ω y + s 1 s z ω rec x V x + s 1 s 1 s ω z = k + s 1 s + s 1 s
46 42 45 syl5ibcom k 0s y ω rec x V x + s 1 s 1 s ω y = k + s 1 s z ω rec x V x + s 1 s 1 s ω z = k + s 1 s + s 1 s
47 46 rexlimdva k 0s y ω rec x V x + s 1 s 1 s ω y = k + s 1 s z ω rec x V x + s 1 s 1 s ω z = k + s 1 s + s 1 s
48 13 16 22 25 32 47 n0sind j 0s y ω rec x V x + s 1 s 1 s ω y = j + s 1 s
49 frfnom rec x V x + s 1 s 1 s ω Fn ω
50 fvelrnb rec x V x + s 1 s 1 s ω Fn ω j + s 1 s ran rec x V x + s 1 s 1 s ω y ω rec x V x + s 1 s 1 s ω y = j + s 1 s
51 49 50 ax-mp j + s 1 s ran rec x V x + s 1 s 1 s ω y ω rec x V x + s 1 s 1 s ω y = j + s 1 s
52 48 51 sylibr j 0s j + s 1 s ran rec x V x + s 1 s 1 s ω
53 df-ima rec x V x + s 1 s 1 s ω = ran rec x V x + s 1 s 1 s ω
54 52 53 eleqtrrdi j 0s j + s 1 s rec x V x + s 1 s 1 s ω
55 eleq1 i = j + s 1 s i rec x V x + s 1 s 1 s ω j + s 1 s rec x V x + s 1 s 1 s ω
56 54 55 syl5ibrcom j 0s i = j + s 1 s i rec x V x + s 1 s 1 s ω
57 56 rexlimiv j 0s i = j + s 1 s i rec x V x + s 1 s 1 s ω
58 6 57 syl i 0s i 0 s i rec x V x + s 1 s 1 s ω
59 1 58 sylbi i s i rec x V x + s 1 s 1 s ω
60 59 ssriv s rec x V x + s 1 s 1 s ω
61 fveq2 k = rec x V x + s 1 s 1 s ω k = rec x V x + s 1 s 1 s ω
62 61 eleq1d k = rec x V x + s 1 s 1 s ω k s rec x V x + s 1 s 1 s ω s
63 fveq2 k = j rec x V x + s 1 s 1 s ω k = rec x V x + s 1 s 1 s ω j
64 63 eleq1d k = j rec x V x + s 1 s 1 s ω k s rec x V x + s 1 s 1 s ω j s
65 fveq2 k = suc j rec x V x + s 1 s 1 s ω k = rec x V x + s 1 s 1 s ω suc j
66 65 eleq1d k = suc j rec x V x + s 1 s 1 s ω k s rec x V x + s 1 s 1 s ω suc j s
67 fveq2 k = i rec x V x + s 1 s 1 s ω k = rec x V x + s 1 s 1 s ω i
68 67 eleq1d k = i rec x V x + s 1 s 1 s ω k s rec x V x + s 1 s 1 s ω i s
69 29 27 eqeltri rec x V x + s 1 s 1 s ω s
70 peano2nns rec x V x + s 1 s 1 s ω j s rec x V x + s 1 s 1 s ω j + s 1 s s
71 ovex rec x V x + s 1 s 1 s ω j + s 1 s V
72 oveq1 y = x y + s 1 s = x + s 1 s
73 oveq1 y = rec x V x + s 1 s 1 s ω j y + s 1 s = rec x V x + s 1 s 1 s ω j + s 1 s
74 36 72 73 frsucmpt2 j ω rec x V x + s 1 s 1 s ω j + s 1 s V rec x V x + s 1 s 1 s ω suc j = rec x V x + s 1 s 1 s ω j + s 1 s
75 71 74 mpan2 j ω rec x V x + s 1 s 1 s ω suc j = rec x V x + s 1 s 1 s ω j + s 1 s
76 75 eleq1d j ω rec x V x + s 1 s 1 s ω suc j s rec x V x + s 1 s 1 s ω j + s 1 s s
77 70 76 imbitrrid j ω rec x V x + s 1 s 1 s ω j s rec x V x + s 1 s 1 s ω suc j s
78 62 64 66 68 69 77 finds i ω rec x V x + s 1 s 1 s ω i s
79 78 rgen i ω rec x V x + s 1 s 1 s ω i s
80 fnfvrnss rec x V x + s 1 s 1 s ω Fn ω i ω rec x V x + s 1 s 1 s ω i s ran rec x V x + s 1 s 1 s ω s
81 49 79 80 mp2an ran rec x V x + s 1 s 1 s ω s
82 53 81 eqsstri rec x V x + s 1 s 1 s ω s
83 60 82 eqssi s = rec x V x + s 1 s 1 s ω