| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnns |
|
| 2 |
|
df-ne |
|
| 3 |
|
n0s0suc |
|
| 4 |
3
|
ord |
|
| 5 |
2 4
|
biimtrid |
|
| 6 |
5
|
imp |
|
| 7 |
|
oveq1 |
|
| 8 |
|
1sno |
|
| 9 |
|
addslid |
|
| 10 |
8 9
|
ax-mp |
|
| 11 |
7 10
|
eqtrdi |
|
| 12 |
11
|
eqeq2d |
|
| 13 |
12
|
rexbidv |
|
| 14 |
|
oveq1 |
|
| 15 |
14
|
eqeq2d |
|
| 16 |
15
|
rexbidv |
|
| 17 |
|
oveq1 |
|
| 18 |
17
|
eqeq2d |
|
| 19 |
18
|
rexbidv |
|
| 20 |
|
fveqeq2 |
|
| 21 |
20
|
cbvrexvw |
|
| 22 |
19 21
|
bitrdi |
|
| 23 |
|
oveq1 |
|
| 24 |
23
|
eqeq2d |
|
| 25 |
24
|
rexbidv |
|
| 26 |
|
peano1 |
|
| 27 |
|
1nns |
|
| 28 |
|
fr0g |
|
| 29 |
27 28
|
ax-mp |
|
| 30 |
|
fveqeq2 |
|
| 31 |
30
|
rspcev |
|
| 32 |
26 29 31
|
mp2an |
|
| 33 |
|
fveqeq2 |
|
| 34 |
|
peano2 |
|
| 35 |
|
ovex |
|
| 36 |
|
eqid |
|
| 37 |
|
oveq1 |
|
| 38 |
|
oveq1 |
|
| 39 |
36 37 38
|
frsucmpt2 |
|
| 40 |
35 39
|
mpan2 |
|
| 41 |
33 34 40
|
rspcedvdw |
|
| 42 |
41
|
adantl |
|
| 43 |
|
oveq1 |
|
| 44 |
43
|
eqeq2d |
|
| 45 |
44
|
rexbidv |
|
| 46 |
42 45
|
syl5ibcom |
|
| 47 |
46
|
rexlimdva |
|
| 48 |
13 16 22 25 32 47
|
n0sind |
|
| 49 |
|
frfnom |
|
| 50 |
|
fvelrnb |
|
| 51 |
49 50
|
ax-mp |
|
| 52 |
48 51
|
sylibr |
|
| 53 |
|
df-ima |
|
| 54 |
52 53
|
eleqtrrdi |
|
| 55 |
|
eleq1 |
|
| 56 |
54 55
|
syl5ibrcom |
|
| 57 |
56
|
rexlimiv |
|
| 58 |
6 57
|
syl |
|
| 59 |
1 58
|
sylbi |
|
| 60 |
59
|
ssriv |
|
| 61 |
|
fveq2 |
|
| 62 |
61
|
eleq1d |
|
| 63 |
|
fveq2 |
|
| 64 |
63
|
eleq1d |
|
| 65 |
|
fveq2 |
|
| 66 |
65
|
eleq1d |
|
| 67 |
|
fveq2 |
|
| 68 |
67
|
eleq1d |
|
| 69 |
29 27
|
eqeltri |
|
| 70 |
|
peano2nns |
|
| 71 |
|
ovex |
|
| 72 |
|
oveq1 |
|
| 73 |
|
oveq1 |
|
| 74 |
36 72 73
|
frsucmpt2 |
|
| 75 |
71 74
|
mpan2 |
|
| 76 |
75
|
eleq1d |
|
| 77 |
70 76
|
imbitrrid |
|
| 78 |
62 64 66 68 69 77
|
finds |
|
| 79 |
78
|
rgen |
|
| 80 |
|
fnfvrnss |
|
| 81 |
49 79 80
|
mp2an |
|
| 82 |
53 81
|
eqsstri |
|
| 83 |
60 82
|
eqssi |
|