Step |
Hyp |
Ref |
Expression |
1 |
|
elnns |
|
2 |
|
df-ne |
|
3 |
|
n0s0suc |
|
4 |
3
|
ord |
|
5 |
2 4
|
biimtrid |
|
6 |
5
|
imp |
|
7 |
|
oveq1 |
|
8 |
|
1sno |
|
9 |
|
addslid |
|
10 |
8 9
|
ax-mp |
|
11 |
7 10
|
eqtrdi |
|
12 |
11
|
eqeq2d |
|
13 |
12
|
rexbidv |
|
14 |
|
oveq1 |
|
15 |
14
|
eqeq2d |
|
16 |
15
|
rexbidv |
|
17 |
|
oveq1 |
|
18 |
17
|
eqeq2d |
|
19 |
18
|
rexbidv |
|
20 |
|
fveqeq2 |
|
21 |
20
|
cbvrexvw |
|
22 |
19 21
|
bitrdi |
|
23 |
|
oveq1 |
|
24 |
23
|
eqeq2d |
|
25 |
24
|
rexbidv |
|
26 |
|
peano1 |
|
27 |
|
1nns |
|
28 |
|
fr0g |
|
29 |
27 28
|
ax-mp |
|
30 |
|
fveqeq2 |
|
31 |
30
|
rspcev |
|
32 |
26 29 31
|
mp2an |
|
33 |
|
fveqeq2 |
|
34 |
|
peano2 |
|
35 |
|
ovex |
|
36 |
|
eqid |
|
37 |
|
oveq1 |
|
38 |
|
oveq1 |
|
39 |
36 37 38
|
frsucmpt2 |
|
40 |
35 39
|
mpan2 |
|
41 |
33 34 40
|
rspcedvdw |
|
42 |
41
|
adantl |
|
43 |
|
oveq1 |
|
44 |
43
|
eqeq2d |
|
45 |
44
|
rexbidv |
|
46 |
42 45
|
syl5ibcom |
|
47 |
46
|
rexlimdva |
|
48 |
13 16 22 25 32 47
|
n0sind |
|
49 |
|
frfnom |
|
50 |
|
fvelrnb |
|
51 |
49 50
|
ax-mp |
|
52 |
48 51
|
sylibr |
|
53 |
|
df-ima |
|
54 |
52 53
|
eleqtrrdi |
|
55 |
|
eleq1 |
|
56 |
54 55
|
syl5ibrcom |
|
57 |
56
|
rexlimiv |
|
58 |
6 57
|
syl |
|
59 |
1 58
|
sylbi |
|
60 |
59
|
ssriv |
|
61 |
|
fveq2 |
|
62 |
61
|
eleq1d |
|
63 |
|
fveq2 |
|
64 |
63
|
eleq1d |
|
65 |
|
fveq2 |
|
66 |
65
|
eleq1d |
|
67 |
|
fveq2 |
|
68 |
67
|
eleq1d |
|
69 |
29 27
|
eqeltri |
|
70 |
|
peano2nns |
|
71 |
|
ovex |
|
72 |
|
oveq1 |
|
73 |
|
oveq1 |
|
74 |
36 72 73
|
frsucmpt2 |
|
75 |
71 74
|
mpan2 |
|
76 |
75
|
eleq1d |
|
77 |
70 76
|
imbitrrid |
|
78 |
62 64 66 68 69 77
|
finds |
|
79 |
78
|
rgen |
|
80 |
|
fnfvrnss |
|
81 |
49 79 80
|
mp2an |
|
82 |
53 81
|
eqsstri |
|
83 |
60 82
|
eqssi |
|