Step |
Hyp |
Ref |
Expression |
1 |
|
elzs |
⊢ ( 𝐴 ∈ ℤs ↔ ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs 𝐴 = ( 𝑛 -s 𝑚 ) ) |
2 |
|
nnsno |
⊢ ( 𝑛 ∈ ℕs → 𝑛 ∈ No ) |
3 |
|
nnsno |
⊢ ( 𝑚 ∈ ℕs → 𝑚 ∈ No ) |
4 |
|
subscl |
⊢ ( ( 𝑛 ∈ No ∧ 𝑚 ∈ No ) → ( 𝑛 -s 𝑚 ) ∈ No ) |
5 |
2 3 4
|
syl2an |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( 𝑛 -s 𝑚 ) ∈ No ) |
6 |
|
sletric |
⊢ ( ( 𝑚 ∈ No ∧ 𝑛 ∈ No ) → ( 𝑚 ≤s 𝑛 ∨ 𝑛 ≤s 𝑚 ) ) |
7 |
3 2 6
|
syl2anr |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( 𝑚 ≤s 𝑛 ∨ 𝑛 ≤s 𝑚 ) ) |
8 |
|
nnn0s |
⊢ ( 𝑚 ∈ ℕs → 𝑚 ∈ ℕ0s ) |
9 |
|
nnn0s |
⊢ ( 𝑛 ∈ ℕs → 𝑛 ∈ ℕ0s ) |
10 |
|
n0subs |
⊢ ( ( 𝑚 ∈ ℕ0s ∧ 𝑛 ∈ ℕ0s ) → ( 𝑚 ≤s 𝑛 ↔ ( 𝑛 -s 𝑚 ) ∈ ℕ0s ) ) |
11 |
8 9 10
|
syl2anr |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( 𝑚 ≤s 𝑛 ↔ ( 𝑛 -s 𝑚 ) ∈ ℕ0s ) ) |
12 |
|
n0subs |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑚 ∈ ℕ0s ) → ( 𝑛 ≤s 𝑚 ↔ ( 𝑚 -s 𝑛 ) ∈ ℕ0s ) ) |
13 |
9 8 12
|
syl2an |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( 𝑛 ≤s 𝑚 ↔ ( 𝑚 -s 𝑛 ) ∈ ℕ0s ) ) |
14 |
2
|
adantr |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → 𝑛 ∈ No ) |
15 |
3
|
adantl |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → 𝑚 ∈ No ) |
16 |
14 15
|
negsubsdi2d |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( -us ‘ ( 𝑛 -s 𝑚 ) ) = ( 𝑚 -s 𝑛 ) ) |
17 |
16
|
eleq1d |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( ( -us ‘ ( 𝑛 -s 𝑚 ) ) ∈ ℕ0s ↔ ( 𝑚 -s 𝑛 ) ∈ ℕ0s ) ) |
18 |
13 17
|
bitr4d |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( 𝑛 ≤s 𝑚 ↔ ( -us ‘ ( 𝑛 -s 𝑚 ) ) ∈ ℕ0s ) ) |
19 |
11 18
|
orbi12d |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( ( 𝑚 ≤s 𝑛 ∨ 𝑛 ≤s 𝑚 ) ↔ ( ( 𝑛 -s 𝑚 ) ∈ ℕ0s ∨ ( -us ‘ ( 𝑛 -s 𝑚 ) ) ∈ ℕ0s ) ) ) |
20 |
7 19
|
mpbid |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( ( 𝑛 -s 𝑚 ) ∈ ℕ0s ∨ ( -us ‘ ( 𝑛 -s 𝑚 ) ) ∈ ℕ0s ) ) |
21 |
5 20
|
jca |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( ( 𝑛 -s 𝑚 ) ∈ No ∧ ( ( 𝑛 -s 𝑚 ) ∈ ℕ0s ∨ ( -us ‘ ( 𝑛 -s 𝑚 ) ) ∈ ℕ0s ) ) ) |
22 |
|
eleq1 |
⊢ ( 𝐴 = ( 𝑛 -s 𝑚 ) → ( 𝐴 ∈ No ↔ ( 𝑛 -s 𝑚 ) ∈ No ) ) |
23 |
|
eleq1 |
⊢ ( 𝐴 = ( 𝑛 -s 𝑚 ) → ( 𝐴 ∈ ℕ0s ↔ ( 𝑛 -s 𝑚 ) ∈ ℕ0s ) ) |
24 |
|
fveq2 |
⊢ ( 𝐴 = ( 𝑛 -s 𝑚 ) → ( -us ‘ 𝐴 ) = ( -us ‘ ( 𝑛 -s 𝑚 ) ) ) |
25 |
24
|
eleq1d |
⊢ ( 𝐴 = ( 𝑛 -s 𝑚 ) → ( ( -us ‘ 𝐴 ) ∈ ℕ0s ↔ ( -us ‘ ( 𝑛 -s 𝑚 ) ) ∈ ℕ0s ) ) |
26 |
23 25
|
orbi12d |
⊢ ( 𝐴 = ( 𝑛 -s 𝑚 ) → ( ( 𝐴 ∈ ℕ0s ∨ ( -us ‘ 𝐴 ) ∈ ℕ0s ) ↔ ( ( 𝑛 -s 𝑚 ) ∈ ℕ0s ∨ ( -us ‘ ( 𝑛 -s 𝑚 ) ) ∈ ℕ0s ) ) ) |
27 |
22 26
|
anbi12d |
⊢ ( 𝐴 = ( 𝑛 -s 𝑚 ) → ( ( 𝐴 ∈ No ∧ ( 𝐴 ∈ ℕ0s ∨ ( -us ‘ 𝐴 ) ∈ ℕ0s ) ) ↔ ( ( 𝑛 -s 𝑚 ) ∈ No ∧ ( ( 𝑛 -s 𝑚 ) ∈ ℕ0s ∨ ( -us ‘ ( 𝑛 -s 𝑚 ) ) ∈ ℕ0s ) ) ) ) |
28 |
21 27
|
syl5ibrcom |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( 𝐴 = ( 𝑛 -s 𝑚 ) → ( 𝐴 ∈ No ∧ ( 𝐴 ∈ ℕ0s ∨ ( -us ‘ 𝐴 ) ∈ ℕ0s ) ) ) ) |
29 |
28
|
rexlimivv |
⊢ ( ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs 𝐴 = ( 𝑛 -s 𝑚 ) → ( 𝐴 ∈ No ∧ ( 𝐴 ∈ ℕ0s ∨ ( -us ‘ 𝐴 ) ∈ ℕ0s ) ) ) |
30 |
|
n0p1nns |
⊢ ( 𝐴 ∈ ℕ0s → ( 𝐴 +s 1s ) ∈ ℕs ) |
31 |
|
1nns |
⊢ 1s ∈ ℕs |
32 |
31
|
a1i |
⊢ ( 𝐴 ∈ ℕ0s → 1s ∈ ℕs ) |
33 |
|
n0sno |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 ∈ No ) |
34 |
|
1sno |
⊢ 1s ∈ No |
35 |
|
pncans |
⊢ ( ( 𝐴 ∈ No ∧ 1s ∈ No ) → ( ( 𝐴 +s 1s ) -s 1s ) = 𝐴 ) |
36 |
33 34 35
|
sylancl |
⊢ ( 𝐴 ∈ ℕ0s → ( ( 𝐴 +s 1s ) -s 1s ) = 𝐴 ) |
37 |
36
|
eqcomd |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 = ( ( 𝐴 +s 1s ) -s 1s ) ) |
38 |
|
rspceov |
⊢ ( ( ( 𝐴 +s 1s ) ∈ ℕs ∧ 1s ∈ ℕs ∧ 𝐴 = ( ( 𝐴 +s 1s ) -s 1s ) ) → ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs 𝐴 = ( 𝑛 -s 𝑚 ) ) |
39 |
30 32 37 38
|
syl3anc |
⊢ ( 𝐴 ∈ ℕ0s → ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs 𝐴 = ( 𝑛 -s 𝑚 ) ) |
40 |
39
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐴 ∈ ℕ0s ) → ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs 𝐴 = ( 𝑛 -s 𝑚 ) ) |
41 |
31
|
a1i |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → 1s ∈ ℕs ) |
42 |
34
|
a1i |
⊢ ( 𝐴 ∈ No → 1s ∈ No ) |
43 |
|
id |
⊢ ( 𝐴 ∈ No → 𝐴 ∈ No ) |
44 |
42 43
|
subsvald |
⊢ ( 𝐴 ∈ No → ( 1s -s 𝐴 ) = ( 1s +s ( -us ‘ 𝐴 ) ) ) |
45 |
|
negscl |
⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) ∈ No ) |
46 |
42 45
|
addscomd |
⊢ ( 𝐴 ∈ No → ( 1s +s ( -us ‘ 𝐴 ) ) = ( ( -us ‘ 𝐴 ) +s 1s ) ) |
47 |
44 46
|
eqtrd |
⊢ ( 𝐴 ∈ No → ( 1s -s 𝐴 ) = ( ( -us ‘ 𝐴 ) +s 1s ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( 1s -s 𝐴 ) = ( ( -us ‘ 𝐴 ) +s 1s ) ) |
49 |
|
n0p1nns |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( ( -us ‘ 𝐴 ) +s 1s ) ∈ ℕs ) |
50 |
49
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( ( -us ‘ 𝐴 ) +s 1s ) ∈ ℕs ) |
51 |
48 50
|
eqeltrd |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( 1s -s 𝐴 ) ∈ ℕs ) |
52 |
42 43
|
nncansd |
⊢ ( 𝐴 ∈ No → ( 1s -s ( 1s -s 𝐴 ) ) = 𝐴 ) |
53 |
52
|
eqcomd |
⊢ ( 𝐴 ∈ No → 𝐴 = ( 1s -s ( 1s -s 𝐴 ) ) ) |
54 |
53
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → 𝐴 = ( 1s -s ( 1s -s 𝐴 ) ) ) |
55 |
|
rspceov |
⊢ ( ( 1s ∈ ℕs ∧ ( 1s -s 𝐴 ) ∈ ℕs ∧ 𝐴 = ( 1s -s ( 1s -s 𝐴 ) ) ) → ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs 𝐴 = ( 𝑛 -s 𝑚 ) ) |
56 |
41 51 54 55
|
syl3anc |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs 𝐴 = ( 𝑛 -s 𝑚 ) ) |
57 |
40 56
|
jaodan |
⊢ ( ( 𝐴 ∈ No ∧ ( 𝐴 ∈ ℕ0s ∨ ( -us ‘ 𝐴 ) ∈ ℕ0s ) ) → ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs 𝐴 = ( 𝑛 -s 𝑚 ) ) |
58 |
29 57
|
impbii |
⊢ ( ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs 𝐴 = ( 𝑛 -s 𝑚 ) ↔ ( 𝐴 ∈ No ∧ ( 𝐴 ∈ ℕ0s ∨ ( -us ‘ 𝐴 ) ∈ ℕ0s ) ) ) |
59 |
1 58
|
bitri |
⊢ ( 𝐴 ∈ ℤs ↔ ( 𝐴 ∈ No ∧ ( 𝐴 ∈ ℕ0s ∨ ( -us ‘ 𝐴 ) ∈ ℕ0s ) ) ) |