Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nncansd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| nncansd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
| Assertion | nncansd | ⊢ ( 𝜑 → ( 𝐴 -s ( 𝐴 -s 𝐵 ) ) = 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nncansd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | nncansd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
| 3 | 1 1 2 | subsubs2d | ⊢ ( 𝜑 → ( 𝐴 -s ( 𝐴 -s 𝐵 ) ) = ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) ) | 
| 4 | pncan3s | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) = 𝐵 ) | |
| 5 | 1 2 4 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) = 𝐵 ) | 
| 6 | 3 5 | eqtrd | ⊢ ( 𝜑 → ( 𝐴 -s ( 𝐴 -s 𝐵 ) ) = 𝐵 ) |