| Step | Hyp | Ref | Expression | 
						
							| 1 |  | posdifsd.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | posdifsd.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | 0sno | ⊢  0s   ∈   No | 
						
							| 4 | 3 | a1i | ⊢ ( 𝜑  →   0s   ∈   No  ) | 
						
							| 5 | 2 1 | subscld | ⊢ ( 𝜑  →  ( 𝐵  -s  𝐴 )  ∈   No  ) | 
						
							| 6 | 4 5 1 | sltadd1d | ⊢ ( 𝜑  →  (  0s   <s  ( 𝐵  -s  𝐴 )  ↔  (  0s   +s  𝐴 )  <s  ( ( 𝐵  -s  𝐴 )  +s  𝐴 ) ) ) | 
						
							| 7 |  | addslid | ⊢ ( 𝐴  ∈   No   →  (  0s   +s  𝐴 )  =  𝐴 ) | 
						
							| 8 | 1 7 | syl | ⊢ ( 𝜑  →  (  0s   +s  𝐴 )  =  𝐴 ) | 
						
							| 9 |  | npcans | ⊢ ( ( 𝐵  ∈   No   ∧  𝐴  ∈   No  )  →  ( ( 𝐵  -s  𝐴 )  +s  𝐴 )  =  𝐵 ) | 
						
							| 10 | 2 1 9 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐵  -s  𝐴 )  +s  𝐴 )  =  𝐵 ) | 
						
							| 11 | 8 10 | breq12d | ⊢ ( 𝜑  →  ( (  0s   +s  𝐴 )  <s  ( ( 𝐵  -s  𝐴 )  +s  𝐴 )  ↔  𝐴  <s  𝐵 ) ) | 
						
							| 12 | 6 11 | bitr2d | ⊢ ( 𝜑  →  ( 𝐴  <s  𝐵  ↔   0s   <s  ( 𝐵  -s  𝐴 ) ) ) |