Description: Subtraction of a positive number decreases the sum. (Contributed by Scott Fenton, 15-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sltsubpos.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| sltsubpos.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
| Assertion | sltsubposd | ⊢ ( 𝜑 → ( 0s <s 𝐴 ↔ ( 𝐵 -s 𝐴 ) <s 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sltsubpos.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | sltsubpos.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
| 3 | 0sno | ⊢ 0s ∈ No | |
| 4 | 3 | a1i | ⊢ ( 𝜑 → 0s ∈ No ) | 
| 5 | 4 1 2 | sltsub2d | ⊢ ( 𝜑 → ( 0s <s 𝐴 ↔ ( 𝐵 -s 𝐴 ) <s ( 𝐵 -s 0s ) ) ) | 
| 6 | subsid1 | ⊢ ( 𝐵 ∈ No → ( 𝐵 -s 0s ) = 𝐵 ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → ( 𝐵 -s 0s ) = 𝐵 ) | 
| 8 | 7 | breq2d | ⊢ ( 𝜑 → ( ( 𝐵 -s 𝐴 ) <s ( 𝐵 -s 0s ) ↔ ( 𝐵 -s 𝐴 ) <s 𝐵 ) ) | 
| 9 | 5 8 | bitrd | ⊢ ( 𝜑 → ( 0s <s 𝐴 ↔ ( 𝐵 -s 𝐴 ) <s 𝐵 ) ) |