| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subsge0d.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | subsge0d.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | 0sno | ⊢  0s   ∈   No | 
						
							| 4 | 3 | a1i | ⊢ ( 𝜑  →   0s   ∈   No  ) | 
						
							| 5 | 1 2 | subscld | ⊢ ( 𝜑  →  ( 𝐴  -s  𝐵 )  ∈   No  ) | 
						
							| 6 | 4 5 2 | sleadd1d | ⊢ ( 𝜑  →  (  0s   ≤s  ( 𝐴  -s  𝐵 )  ↔  (  0s   +s  𝐵 )  ≤s  ( ( 𝐴  -s  𝐵 )  +s  𝐵 ) ) ) | 
						
							| 7 |  | addslid | ⊢ ( 𝐵  ∈   No   →  (  0s   +s  𝐵 )  =  𝐵 ) | 
						
							| 8 | 2 7 | syl | ⊢ ( 𝜑  →  (  0s   +s  𝐵 )  =  𝐵 ) | 
						
							| 9 |  | npcans | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ( 𝐴  -s  𝐵 )  +s  𝐵 )  =  𝐴 ) | 
						
							| 10 | 1 2 9 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  -s  𝐵 )  +s  𝐵 )  =  𝐴 ) | 
						
							| 11 | 8 10 | breq12d | ⊢ ( 𝜑  →  ( (  0s   +s  𝐵 )  ≤s  ( ( 𝐴  -s  𝐵 )  +s  𝐵 )  ↔  𝐵  ≤s  𝐴 ) ) | 
						
							| 12 | 6 11 | bitrd | ⊢ ( 𝜑  →  (  0s   ≤s  ( 𝐴  -s  𝐵 )  ↔  𝐵  ≤s  𝐴 ) ) |