| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subsge0d.1 |  |-  ( ph -> A e. No ) | 
						
							| 2 |  | subsge0d.2 |  |-  ( ph -> B e. No ) | 
						
							| 3 |  | 0sno |  |-  0s e. No | 
						
							| 4 | 3 | a1i |  |-  ( ph -> 0s e. No ) | 
						
							| 5 | 1 2 | subscld |  |-  ( ph -> ( A -s B ) e. No ) | 
						
							| 6 | 4 5 2 | sleadd1d |  |-  ( ph -> ( 0s <_s ( A -s B ) <-> ( 0s +s B ) <_s ( ( A -s B ) +s B ) ) ) | 
						
							| 7 |  | addslid |  |-  ( B e. No -> ( 0s +s B ) = B ) | 
						
							| 8 | 2 7 | syl |  |-  ( ph -> ( 0s +s B ) = B ) | 
						
							| 9 |  | npcans |  |-  ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A ) | 
						
							| 10 | 1 2 9 | syl2anc |  |-  ( ph -> ( ( A -s B ) +s B ) = A ) | 
						
							| 11 | 8 10 | breq12d |  |-  ( ph -> ( ( 0s +s B ) <_s ( ( A -s B ) +s B ) <-> B <_s A ) ) | 
						
							| 12 | 6 11 | bitrd |  |-  ( ph -> ( 0s <_s ( A -s B ) <-> B <_s A ) ) |