Metamath Proof Explorer
		
		
		
		Description:  Subtraction from both sides of surreal less-than.  (Contributed by Scott
       Fenton, 5-Feb-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | sltsubd.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
					
						|  |  | sltsubd.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
					
						|  |  | sltsubd.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
				
					|  | Assertion | sltsub2d | ⊢  ( 𝜑  →  ( 𝐴  <s  𝐵  ↔  ( 𝐶  -s  𝐵 )  <s  ( 𝐶  -s  𝐴 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sltsubd.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | sltsubd.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | sltsubd.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 4 |  | sltsub2 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  <s  𝐵  ↔  ( 𝐶  -s  𝐵 )  <s  ( 𝐶  -s  𝐴 ) ) ) | 
						
							| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  <s  𝐵  ↔  ( 𝐶  -s  𝐵 )  <s  ( 𝐶  -s  𝐴 ) ) ) |