| Step | Hyp | Ref | Expression | 
						
							| 1 |  | posdifsd.1 |  |-  ( ph -> A e. No ) | 
						
							| 2 |  | posdifsd.2 |  |-  ( ph -> B e. No ) | 
						
							| 3 |  | 0sno |  |-  0s e. No | 
						
							| 4 | 3 | a1i |  |-  ( ph -> 0s e. No ) | 
						
							| 5 | 2 1 | subscld |  |-  ( ph -> ( B -s A ) e. No ) | 
						
							| 6 | 4 5 1 | sltadd1d |  |-  ( ph -> ( 0s  ( 0s +s A )  | 
						
							| 7 |  | addslid |  |-  ( A e. No -> ( 0s +s A ) = A ) | 
						
							| 8 | 1 7 | syl |  |-  ( ph -> ( 0s +s A ) = A ) | 
						
							| 9 |  | npcans |  |-  ( ( B e. No /\ A e. No ) -> ( ( B -s A ) +s A ) = B ) | 
						
							| 10 | 2 1 9 | syl2anc |  |-  ( ph -> ( ( B -s A ) +s A ) = B ) | 
						
							| 11 | 8 10 | breq12d |  |-  ( ph -> ( ( 0s +s A )  A  | 
						
							| 12 | 6 11 | bitr2d |  |-  ( ph -> ( A  0s  |