Metamath Proof Explorer


Theorem posdifsd

Description: Comparison of two surreals whose difference is positive. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses posdifsd.1
|- ( ph -> A e. No )
posdifsd.2
|- ( ph -> B e. No )
Assertion posdifsd
|- ( ph -> ( A  0s 

Proof

Step Hyp Ref Expression
1 posdifsd.1
 |-  ( ph -> A e. No )
2 posdifsd.2
 |-  ( ph -> B e. No )
3 0sno
 |-  0s e. No
4 3 a1i
 |-  ( ph -> 0s e. No )
5 2 1 subscld
 |-  ( ph -> ( B -s A ) e. No )
6 4 5 1 sltadd1d
 |-  ( ph -> ( 0s  ( 0s +s A ) 
7 addslid
 |-  ( A e. No -> ( 0s +s A ) = A )
8 1 7 syl
 |-  ( ph -> ( 0s +s A ) = A )
9 npcans
 |-  ( ( B e. No /\ A e. No ) -> ( ( B -s A ) +s A ) = B )
10 2 1 9 syl2anc
 |-  ( ph -> ( ( B -s A ) +s A ) = B )
11 8 10 breq12d
 |-  ( ph -> ( ( 0s +s A )  A 
12 6 11 bitr2d
 |-  ( ph -> ( A  0s