Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nncansd.1 | |- ( ph -> A e. No ) | |
| nncansd.2 | |- ( ph -> B e. No ) | ||
| Assertion | nncansd | |- ( ph -> ( A -s ( A -s B ) ) = B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nncansd.1 | |- ( ph -> A e. No ) | |
| 2 | nncansd.2 | |- ( ph -> B e. No ) | |
| 3 | 1 1 2 | subsubs2d | |- ( ph -> ( A -s ( A -s B ) ) = ( A +s ( B -s A ) ) ) | 
| 4 | pncan3s | |- ( ( A e. No /\ B e. No ) -> ( A +s ( B -s A ) ) = B ) | |
| 5 | 1 2 4 | syl2anc | |- ( ph -> ( A +s ( B -s A ) ) = B ) | 
| 6 | 3 5 | eqtrd | |- ( ph -> ( A -s ( A -s B ) ) = B ) |