| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elzs |  |-  ( A e. ZZ_s <-> E. n e. NN_s E. m e. NN_s A = ( n -s m ) ) | 
						
							| 2 |  | nnsno |  |-  ( n e. NN_s -> n e. No ) | 
						
							| 3 |  | nnsno |  |-  ( m e. NN_s -> m e. No ) | 
						
							| 4 |  | subscl |  |-  ( ( n e. No /\ m e. No ) -> ( n -s m ) e. No ) | 
						
							| 5 | 2 3 4 | syl2an |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> ( n -s m ) e. No ) | 
						
							| 6 |  | sletric |  |-  ( ( m e. No /\ n e. No ) -> ( m <_s n \/ n <_s m ) ) | 
						
							| 7 | 3 2 6 | syl2anr |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> ( m <_s n \/ n <_s m ) ) | 
						
							| 8 |  | nnn0s |  |-  ( m e. NN_s -> m e. NN0_s ) | 
						
							| 9 |  | nnn0s |  |-  ( n e. NN_s -> n e. NN0_s ) | 
						
							| 10 |  | n0subs |  |-  ( ( m e. NN0_s /\ n e. NN0_s ) -> ( m <_s n <-> ( n -s m ) e. NN0_s ) ) | 
						
							| 11 | 8 9 10 | syl2anr |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> ( m <_s n <-> ( n -s m ) e. NN0_s ) ) | 
						
							| 12 |  | n0subs |  |-  ( ( n e. NN0_s /\ m e. NN0_s ) -> ( n <_s m <-> ( m -s n ) e. NN0_s ) ) | 
						
							| 13 | 9 8 12 | syl2an |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> ( n <_s m <-> ( m -s n ) e. NN0_s ) ) | 
						
							| 14 | 2 | adantr |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> n e. No ) | 
						
							| 15 | 3 | adantl |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> m e. No ) | 
						
							| 16 | 14 15 | negsubsdi2d |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> ( -us ` ( n -s m ) ) = ( m -s n ) ) | 
						
							| 17 | 16 | eleq1d |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> ( ( -us ` ( n -s m ) ) e. NN0_s <-> ( m -s n ) e. NN0_s ) ) | 
						
							| 18 | 13 17 | bitr4d |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> ( n <_s m <-> ( -us ` ( n -s m ) ) e. NN0_s ) ) | 
						
							| 19 | 11 18 | orbi12d |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> ( ( m <_s n \/ n <_s m ) <-> ( ( n -s m ) e. NN0_s \/ ( -us ` ( n -s m ) ) e. NN0_s ) ) ) | 
						
							| 20 | 7 19 | mpbid |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> ( ( n -s m ) e. NN0_s \/ ( -us ` ( n -s m ) ) e. NN0_s ) ) | 
						
							| 21 | 5 20 | jca |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> ( ( n -s m ) e. No /\ ( ( n -s m ) e. NN0_s \/ ( -us ` ( n -s m ) ) e. NN0_s ) ) ) | 
						
							| 22 |  | eleq1 |  |-  ( A = ( n -s m ) -> ( A e. No <-> ( n -s m ) e. No ) ) | 
						
							| 23 |  | eleq1 |  |-  ( A = ( n -s m ) -> ( A e. NN0_s <-> ( n -s m ) e. NN0_s ) ) | 
						
							| 24 |  | fveq2 |  |-  ( A = ( n -s m ) -> ( -us ` A ) = ( -us ` ( n -s m ) ) ) | 
						
							| 25 | 24 | eleq1d |  |-  ( A = ( n -s m ) -> ( ( -us ` A ) e. NN0_s <-> ( -us ` ( n -s m ) ) e. NN0_s ) ) | 
						
							| 26 | 23 25 | orbi12d |  |-  ( A = ( n -s m ) -> ( ( A e. NN0_s \/ ( -us ` A ) e. NN0_s ) <-> ( ( n -s m ) e. NN0_s \/ ( -us ` ( n -s m ) ) e. NN0_s ) ) ) | 
						
							| 27 | 22 26 | anbi12d |  |-  ( A = ( n -s m ) -> ( ( A e. No /\ ( A e. NN0_s \/ ( -us ` A ) e. NN0_s ) ) <-> ( ( n -s m ) e. No /\ ( ( n -s m ) e. NN0_s \/ ( -us ` ( n -s m ) ) e. NN0_s ) ) ) ) | 
						
							| 28 | 21 27 | syl5ibrcom |  |-  ( ( n e. NN_s /\ m e. NN_s ) -> ( A = ( n -s m ) -> ( A e. No /\ ( A e. NN0_s \/ ( -us ` A ) e. NN0_s ) ) ) ) | 
						
							| 29 | 28 | rexlimivv |  |-  ( E. n e. NN_s E. m e. NN_s A = ( n -s m ) -> ( A e. No /\ ( A e. NN0_s \/ ( -us ` A ) e. NN0_s ) ) ) | 
						
							| 30 |  | n0p1nns |  |-  ( A e. NN0_s -> ( A +s 1s ) e. NN_s ) | 
						
							| 31 |  | 1nns |  |-  1s e. NN_s | 
						
							| 32 | 31 | a1i |  |-  ( A e. NN0_s -> 1s e. NN_s ) | 
						
							| 33 |  | n0sno |  |-  ( A e. NN0_s -> A e. No ) | 
						
							| 34 |  | 1sno |  |-  1s e. No | 
						
							| 35 |  | pncans |  |-  ( ( A e. No /\ 1s e. No ) -> ( ( A +s 1s ) -s 1s ) = A ) | 
						
							| 36 | 33 34 35 | sylancl |  |-  ( A e. NN0_s -> ( ( A +s 1s ) -s 1s ) = A ) | 
						
							| 37 | 36 | eqcomd |  |-  ( A e. NN0_s -> A = ( ( A +s 1s ) -s 1s ) ) | 
						
							| 38 |  | rspceov |  |-  ( ( ( A +s 1s ) e. NN_s /\ 1s e. NN_s /\ A = ( ( A +s 1s ) -s 1s ) ) -> E. n e. NN_s E. m e. NN_s A = ( n -s m ) ) | 
						
							| 39 | 30 32 37 38 | syl3anc |  |-  ( A e. NN0_s -> E. n e. NN_s E. m e. NN_s A = ( n -s m ) ) | 
						
							| 40 | 39 | adantl |  |-  ( ( A e. No /\ A e. NN0_s ) -> E. n e. NN_s E. m e. NN_s A = ( n -s m ) ) | 
						
							| 41 | 31 | a1i |  |-  ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> 1s e. NN_s ) | 
						
							| 42 | 34 | a1i |  |-  ( A e. No -> 1s e. No ) | 
						
							| 43 |  | id |  |-  ( A e. No -> A e. No ) | 
						
							| 44 | 42 43 | subsvald |  |-  ( A e. No -> ( 1s -s A ) = ( 1s +s ( -us ` A ) ) ) | 
						
							| 45 |  | negscl |  |-  ( A e. No -> ( -us ` A ) e. No ) | 
						
							| 46 | 42 45 | addscomd |  |-  ( A e. No -> ( 1s +s ( -us ` A ) ) = ( ( -us ` A ) +s 1s ) ) | 
						
							| 47 | 44 46 | eqtrd |  |-  ( A e. No -> ( 1s -s A ) = ( ( -us ` A ) +s 1s ) ) | 
						
							| 48 | 47 | adantr |  |-  ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( 1s -s A ) = ( ( -us ` A ) +s 1s ) ) | 
						
							| 49 |  | n0p1nns |  |-  ( ( -us ` A ) e. NN0_s -> ( ( -us ` A ) +s 1s ) e. NN_s ) | 
						
							| 50 | 49 | adantl |  |-  ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( ( -us ` A ) +s 1s ) e. NN_s ) | 
						
							| 51 | 48 50 | eqeltrd |  |-  ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( 1s -s A ) e. NN_s ) | 
						
							| 52 | 42 43 | nncansd |  |-  ( A e. No -> ( 1s -s ( 1s -s A ) ) = A ) | 
						
							| 53 | 52 | eqcomd |  |-  ( A e. No -> A = ( 1s -s ( 1s -s A ) ) ) | 
						
							| 54 | 53 | adantr |  |-  ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> A = ( 1s -s ( 1s -s A ) ) ) | 
						
							| 55 |  | rspceov |  |-  ( ( 1s e. NN_s /\ ( 1s -s A ) e. NN_s /\ A = ( 1s -s ( 1s -s A ) ) ) -> E. n e. NN_s E. m e. NN_s A = ( n -s m ) ) | 
						
							| 56 | 41 51 54 55 | syl3anc |  |-  ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> E. n e. NN_s E. m e. NN_s A = ( n -s m ) ) | 
						
							| 57 | 40 56 | jaodan |  |-  ( ( A e. No /\ ( A e. NN0_s \/ ( -us ` A ) e. NN0_s ) ) -> E. n e. NN_s E. m e. NN_s A = ( n -s m ) ) | 
						
							| 58 | 29 57 | impbii |  |-  ( E. n e. NN_s E. m e. NN_s A = ( n -s m ) <-> ( A e. No /\ ( A e. NN0_s \/ ( -us ` A ) e. NN0_s ) ) ) | 
						
							| 59 | 1 58 | bitri |  |-  ( A e. ZZ_s <-> ( A e. No /\ ( A e. NN0_s \/ ( -us ` A ) e. NN0_s ) ) ) |