| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq2 |
|- ( x = 0s -> ( z <_s x <-> z <_s 0s ) ) |
| 2 |
|
oveq1 |
|- ( x = 0s -> ( x -s z ) = ( 0s -s z ) ) |
| 3 |
2
|
eleq1d |
|- ( x = 0s -> ( ( x -s z ) e. NN0_s <-> ( 0s -s z ) e. NN0_s ) ) |
| 4 |
1 3
|
imbi12d |
|- ( x = 0s -> ( ( z <_s x -> ( x -s z ) e. NN0_s ) <-> ( z <_s 0s -> ( 0s -s z ) e. NN0_s ) ) ) |
| 5 |
4
|
ralbidv |
|- ( x = 0s -> ( A. z e. NN0_s ( z <_s x -> ( x -s z ) e. NN0_s ) <-> A. z e. NN0_s ( z <_s 0s -> ( 0s -s z ) e. NN0_s ) ) ) |
| 6 |
|
breq2 |
|- ( x = y -> ( z <_s x <-> z <_s y ) ) |
| 7 |
|
oveq1 |
|- ( x = y -> ( x -s z ) = ( y -s z ) ) |
| 8 |
7
|
eleq1d |
|- ( x = y -> ( ( x -s z ) e. NN0_s <-> ( y -s z ) e. NN0_s ) ) |
| 9 |
6 8
|
imbi12d |
|- ( x = y -> ( ( z <_s x -> ( x -s z ) e. NN0_s ) <-> ( z <_s y -> ( y -s z ) e. NN0_s ) ) ) |
| 10 |
9
|
ralbidv |
|- ( x = y -> ( A. z e. NN0_s ( z <_s x -> ( x -s z ) e. NN0_s ) <-> A. z e. NN0_s ( z <_s y -> ( y -s z ) e. NN0_s ) ) ) |
| 11 |
|
breq2 |
|- ( x = ( y +s 1s ) -> ( z <_s x <-> z <_s ( y +s 1s ) ) ) |
| 12 |
|
oveq1 |
|- ( x = ( y +s 1s ) -> ( x -s z ) = ( ( y +s 1s ) -s z ) ) |
| 13 |
12
|
eleq1d |
|- ( x = ( y +s 1s ) -> ( ( x -s z ) e. NN0_s <-> ( ( y +s 1s ) -s z ) e. NN0_s ) ) |
| 14 |
11 13
|
imbi12d |
|- ( x = ( y +s 1s ) -> ( ( z <_s x -> ( x -s z ) e. NN0_s ) <-> ( z <_s ( y +s 1s ) -> ( ( y +s 1s ) -s z ) e. NN0_s ) ) ) |
| 15 |
14
|
ralbidv |
|- ( x = ( y +s 1s ) -> ( A. z e. NN0_s ( z <_s x -> ( x -s z ) e. NN0_s ) <-> A. z e. NN0_s ( z <_s ( y +s 1s ) -> ( ( y +s 1s ) -s z ) e. NN0_s ) ) ) |
| 16 |
|
breq2 |
|- ( x = N -> ( z <_s x <-> z <_s N ) ) |
| 17 |
|
oveq1 |
|- ( x = N -> ( x -s z ) = ( N -s z ) ) |
| 18 |
17
|
eleq1d |
|- ( x = N -> ( ( x -s z ) e. NN0_s <-> ( N -s z ) e. NN0_s ) ) |
| 19 |
16 18
|
imbi12d |
|- ( x = N -> ( ( z <_s x -> ( x -s z ) e. NN0_s ) <-> ( z <_s N -> ( N -s z ) e. NN0_s ) ) ) |
| 20 |
19
|
ralbidv |
|- ( x = N -> ( A. z e. NN0_s ( z <_s x -> ( x -s z ) e. NN0_s ) <-> A. z e. NN0_s ( z <_s N -> ( N -s z ) e. NN0_s ) ) ) |
| 21 |
|
n0sge0 |
|- ( z e. NN0_s -> 0s <_s z ) |
| 22 |
21
|
biantrud |
|- ( z e. NN0_s -> ( z <_s 0s <-> ( z <_s 0s /\ 0s <_s z ) ) ) |
| 23 |
|
n0sno |
|- ( z e. NN0_s -> z e. No ) |
| 24 |
|
0sno |
|- 0s e. No |
| 25 |
|
sletri3 |
|- ( ( z e. No /\ 0s e. No ) -> ( z = 0s <-> ( z <_s 0s /\ 0s <_s z ) ) ) |
| 26 |
23 24 25
|
sylancl |
|- ( z e. NN0_s -> ( z = 0s <-> ( z <_s 0s /\ 0s <_s z ) ) ) |
| 27 |
22 26
|
bitr4d |
|- ( z e. NN0_s -> ( z <_s 0s <-> z = 0s ) ) |
| 28 |
|
oveq2 |
|- ( z = 0s -> ( 0s -s z ) = ( 0s -s 0s ) ) |
| 29 |
|
subsid |
|- ( 0s e. No -> ( 0s -s 0s ) = 0s ) |
| 30 |
24 29
|
ax-mp |
|- ( 0s -s 0s ) = 0s |
| 31 |
|
0n0s |
|- 0s e. NN0_s |
| 32 |
30 31
|
eqeltri |
|- ( 0s -s 0s ) e. NN0_s |
| 33 |
28 32
|
eqeltrdi |
|- ( z = 0s -> ( 0s -s z ) e. NN0_s ) |
| 34 |
27 33
|
biimtrdi |
|- ( z e. NN0_s -> ( z <_s 0s -> ( 0s -s z ) e. NN0_s ) ) |
| 35 |
34
|
rgen |
|- A. z e. NN0_s ( z <_s 0s -> ( 0s -s z ) e. NN0_s ) |
| 36 |
|
breq1 |
|- ( z = x -> ( z <_s y <-> x <_s y ) ) |
| 37 |
|
oveq2 |
|- ( z = x -> ( y -s z ) = ( y -s x ) ) |
| 38 |
37
|
eleq1d |
|- ( z = x -> ( ( y -s z ) e. NN0_s <-> ( y -s x ) e. NN0_s ) ) |
| 39 |
36 38
|
imbi12d |
|- ( z = x -> ( ( z <_s y -> ( y -s z ) e. NN0_s ) <-> ( x <_s y -> ( y -s x ) e. NN0_s ) ) ) |
| 40 |
39
|
cbvralvw |
|- ( A. z e. NN0_s ( z <_s y -> ( y -s z ) e. NN0_s ) <-> A. x e. NN0_s ( x <_s y -> ( y -s x ) e. NN0_s ) ) |
| 41 |
|
n0sno |
|- ( y e. NN0_s -> y e. No ) |
| 42 |
|
peano2no |
|- ( y e. No -> ( y +s 1s ) e. No ) |
| 43 |
|
subsid1 |
|- ( ( y +s 1s ) e. No -> ( ( y +s 1s ) -s 0s ) = ( y +s 1s ) ) |
| 44 |
41 42 43
|
3syl |
|- ( y e. NN0_s -> ( ( y +s 1s ) -s 0s ) = ( y +s 1s ) ) |
| 45 |
|
peano2n0s |
|- ( y e. NN0_s -> ( y +s 1s ) e. NN0_s ) |
| 46 |
44 45
|
eqeltrd |
|- ( y e. NN0_s -> ( ( y +s 1s ) -s 0s ) e. NN0_s ) |
| 47 |
|
oveq2 |
|- ( z = 0s -> ( ( y +s 1s ) -s z ) = ( ( y +s 1s ) -s 0s ) ) |
| 48 |
47
|
eleq1d |
|- ( z = 0s -> ( ( ( y +s 1s ) -s z ) e. NN0_s <-> ( ( y +s 1s ) -s 0s ) e. NN0_s ) ) |
| 49 |
46 48
|
syl5ibrcom |
|- ( y e. NN0_s -> ( z = 0s -> ( ( y +s 1s ) -s z ) e. NN0_s ) ) |
| 50 |
49
|
2a1dd |
|- ( y e. NN0_s -> ( z = 0s -> ( A. x e. NN0_s ( x <_s y -> ( y -s x ) e. NN0_s ) -> ( z <_s ( y +s 1s ) -> ( ( y +s 1s ) -s z ) e. NN0_s ) ) ) ) |
| 51 |
50
|
adantr |
|- ( ( y e. NN0_s /\ z e. NN0_s ) -> ( z = 0s -> ( A. x e. NN0_s ( x <_s y -> ( y -s x ) e. NN0_s ) -> ( z <_s ( y +s 1s ) -> ( ( y +s 1s ) -s z ) e. NN0_s ) ) ) ) |
| 52 |
|
breq1 |
|- ( x = ( z -s 1s ) -> ( x <_s y <-> ( z -s 1s ) <_s y ) ) |
| 53 |
|
oveq2 |
|- ( x = ( z -s 1s ) -> ( y -s x ) = ( y -s ( z -s 1s ) ) ) |
| 54 |
53
|
eleq1d |
|- ( x = ( z -s 1s ) -> ( ( y -s x ) e. NN0_s <-> ( y -s ( z -s 1s ) ) e. NN0_s ) ) |
| 55 |
52 54
|
imbi12d |
|- ( x = ( z -s 1s ) -> ( ( x <_s y -> ( y -s x ) e. NN0_s ) <-> ( ( z -s 1s ) <_s y -> ( y -s ( z -s 1s ) ) e. NN0_s ) ) ) |
| 56 |
55
|
rspcv |
|- ( ( z -s 1s ) e. NN0_s -> ( A. x e. NN0_s ( x <_s y -> ( y -s x ) e. NN0_s ) -> ( ( z -s 1s ) <_s y -> ( y -s ( z -s 1s ) ) e. NN0_s ) ) ) |
| 57 |
23
|
adantl |
|- ( ( y e. NN0_s /\ z e. NN0_s ) -> z e. No ) |
| 58 |
|
1sno |
|- 1s e. No |
| 59 |
58
|
a1i |
|- ( ( y e. NN0_s /\ z e. NN0_s ) -> 1s e. No ) |
| 60 |
41
|
adantr |
|- ( ( y e. NN0_s /\ z e. NN0_s ) -> y e. No ) |
| 61 |
57 59 60
|
slesubaddd |
|- ( ( y e. NN0_s /\ z e. NN0_s ) -> ( ( z -s 1s ) <_s y <-> z <_s ( y +s 1s ) ) ) |
| 62 |
60 57 59
|
subsubs2d |
|- ( ( y e. NN0_s /\ z e. NN0_s ) -> ( y -s ( z -s 1s ) ) = ( y +s ( 1s -s z ) ) ) |
| 63 |
60 59 57
|
addsubsassd |
|- ( ( y e. NN0_s /\ z e. NN0_s ) -> ( ( y +s 1s ) -s z ) = ( y +s ( 1s -s z ) ) ) |
| 64 |
62 63
|
eqtr4d |
|- ( ( y e. NN0_s /\ z e. NN0_s ) -> ( y -s ( z -s 1s ) ) = ( ( y +s 1s ) -s z ) ) |
| 65 |
64
|
eleq1d |
|- ( ( y e. NN0_s /\ z e. NN0_s ) -> ( ( y -s ( z -s 1s ) ) e. NN0_s <-> ( ( y +s 1s ) -s z ) e. NN0_s ) ) |
| 66 |
61 65
|
imbi12d |
|- ( ( y e. NN0_s /\ z e. NN0_s ) -> ( ( ( z -s 1s ) <_s y -> ( y -s ( z -s 1s ) ) e. NN0_s ) <-> ( z <_s ( y +s 1s ) -> ( ( y +s 1s ) -s z ) e. NN0_s ) ) ) |
| 67 |
66
|
biimpd |
|- ( ( y e. NN0_s /\ z e. NN0_s ) -> ( ( ( z -s 1s ) <_s y -> ( y -s ( z -s 1s ) ) e. NN0_s ) -> ( z <_s ( y +s 1s ) -> ( ( y +s 1s ) -s z ) e. NN0_s ) ) ) |
| 68 |
56 67
|
syl9r |
|- ( ( y e. NN0_s /\ z e. NN0_s ) -> ( ( z -s 1s ) e. NN0_s -> ( A. x e. NN0_s ( x <_s y -> ( y -s x ) e. NN0_s ) -> ( z <_s ( y +s 1s ) -> ( ( y +s 1s ) -s z ) e. NN0_s ) ) ) ) |
| 69 |
|
n0s0m1 |
|- ( z e. NN0_s -> ( z = 0s \/ ( z -s 1s ) e. NN0_s ) ) |
| 70 |
69
|
adantl |
|- ( ( y e. NN0_s /\ z e. NN0_s ) -> ( z = 0s \/ ( z -s 1s ) e. NN0_s ) ) |
| 71 |
51 68 70
|
mpjaod |
|- ( ( y e. NN0_s /\ z e. NN0_s ) -> ( A. x e. NN0_s ( x <_s y -> ( y -s x ) e. NN0_s ) -> ( z <_s ( y +s 1s ) -> ( ( y +s 1s ) -s z ) e. NN0_s ) ) ) |
| 72 |
71
|
ralrimdva |
|- ( y e. NN0_s -> ( A. x e. NN0_s ( x <_s y -> ( y -s x ) e. NN0_s ) -> A. z e. NN0_s ( z <_s ( y +s 1s ) -> ( ( y +s 1s ) -s z ) e. NN0_s ) ) ) |
| 73 |
40 72
|
biimtrid |
|- ( y e. NN0_s -> ( A. z e. NN0_s ( z <_s y -> ( y -s z ) e. NN0_s ) -> A. z e. NN0_s ( z <_s ( y +s 1s ) -> ( ( y +s 1s ) -s z ) e. NN0_s ) ) ) |
| 74 |
5 10 15 20 35 73
|
n0sind |
|- ( N e. NN0_s -> A. z e. NN0_s ( z <_s N -> ( N -s z ) e. NN0_s ) ) |
| 75 |
|
breq1 |
|- ( z = M -> ( z <_s N <-> M <_s N ) ) |
| 76 |
|
oveq2 |
|- ( z = M -> ( N -s z ) = ( N -s M ) ) |
| 77 |
76
|
eleq1d |
|- ( z = M -> ( ( N -s z ) e. NN0_s <-> ( N -s M ) e. NN0_s ) ) |
| 78 |
75 77
|
imbi12d |
|- ( z = M -> ( ( z <_s N -> ( N -s z ) e. NN0_s ) <-> ( M <_s N -> ( N -s M ) e. NN0_s ) ) ) |
| 79 |
78
|
rspcva |
|- ( ( M e. NN0_s /\ A. z e. NN0_s ( z <_s N -> ( N -s z ) e. NN0_s ) ) -> ( M <_s N -> ( N -s M ) e. NN0_s ) ) |
| 80 |
74 79
|
sylan2 |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( M <_s N -> ( N -s M ) e. NN0_s ) ) |
| 81 |
|
n0sge0 |
|- ( ( N -s M ) e. NN0_s -> 0s <_s ( N -s M ) ) |
| 82 |
|
n0sno |
|- ( N e. NN0_s -> N e. No ) |
| 83 |
82
|
adantl |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> N e. No ) |
| 84 |
|
n0sno |
|- ( M e. NN0_s -> M e. No ) |
| 85 |
84
|
adantr |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> M e. No ) |
| 86 |
83 85
|
subsge0d |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( 0s <_s ( N -s M ) <-> M <_s N ) ) |
| 87 |
81 86
|
imbitrid |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( ( N -s M ) e. NN0_s -> M <_s N ) ) |
| 88 |
80 87
|
impbid |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( M <_s N <-> ( N -s M ) e. NN0_s ) ) |